Stone-Weierstrass theorems for random functions

Authors

  • Hans-Jörg STARKLOFF Technische Universit¨at Bergakademie Freiberg Faculty of Mathematics and Computer Sciences Pru¨ferstraße 9, D-09599 Freiberg, Germany, e-mail: Hans-Joerg.Starkloff@math.tu-freiberg.de

DOI:

https://doi.org/10.24193/subbmath.2019.2.10

Keywords:

Stone-Weierstrass theorem, approximation of random functions, stochastic convergence, random polynomial.

Abstract

We present several generalizations of the Stone-Weierstrass theorem concerning the approximation of continuous functions on a compact set by using functions from a subalgebra to the case of random functions and random variables in the space of continuous functions. The continuity of the random functions is allowed to be only with respect to a metric, hence including the case of stochastically continuous random functions. These results could be cornerstones for the general theory of approximation for random functions.

Mathematics Subject Classification (2010): 41A65, 60G07, 60B11.

References

Billingsley, P., Convergence of Probability Measures, John Wiley & Sons, New York, 1968.

Bogachev, V.I., Measure Theory, Springer, Berlin, 2007.

Dieudonn´e, D., Foundations of Modern Analysis, Academic Press, New York, 1969. [4] Dugu´e, D., Trait´e de Statistique Th´eoretique et Appliqu´ee, Masson, Paris, 1958.

Onicescu, O., Istra˘¸tescu, V.I., Approximation theorems for random functions, Rend. Mat. Serie VI, 8(1975), 65-81.

Prolla, J.B., Weierstrass-Stone, the Theorem, Lang, Frankfurt am Main, 1993.

Rolewicz, S., Metric Linear Spaces, D. Reidel Publishing Company, Dordrecht, 1984. [8] Rudin, W., Real and Complex Analysis, McGraw-Hill Book Company, New York, 1970. [9] Rudin, W., Functional Analysis, McGraw-Hill Book Company, New York, 1973.

Ryabykh, V.G., Tokmakova,N.N., Yablonski˘i, A.Ya., Approksimatsiya slucha˘inykh funktsi˘i (Approximation of random functions), In: Matematicheski˘i analiz i ego prilozheniya, Rostov na Donu, (1985), 131–135.

Timofte, V., Stone-Weierstrass theorems revisited, J. Approx. Theory, 136(2005), 45-59.

Downloads

Published

2019-06-30

How to Cite

STARKLOFF, H.-J. (2019). Stone-Weierstrass theorems for random functions. Studia Universitatis Babeș-Bolyai Mathematica, 64(2), 253–262. https://doi.org/10.24193/subbmath.2019.2.10

Issue

Section

Articles

Most read articles by the same author(s)

Similar Articles

<< < 9 10 11 12 13 14 15 16 17 18 > >> 

You may also start an advanced similarity search for this article.