Operator norms of Gauß-Weierstraß operators and their left quasi interpolants
DOI:
https://doi.org/10.24193/subbmath.2019.2.08Keywords:
Approximation by positive operators, operator norm.Abstract
The paper deals with the Gauß–Weierstraß operators Wn and their left quasi interpolants W [r]. The quasi interpolants were defined by Paul Sablonni`ere in 2014. Recently, their asymptotic behaviour was studied by Octavian Agratini, Radu P˘alta˘nea and the author by presenting complete asymptotic expansions. In this paper we derive estimates for the operator norms of Wn and W [r] acting on various function spaces.
Mathematics Subject Classification (2010): 41A36, 41A45, 47A30.
References
Abel, U., Asymptotic expansions for Favard operators and their left quasi-interpolants, Stud. Univ. Babe¸s-Bolyai Math., 56(2011), 199–206.
Abel, U., Agratini, O., P˘alta˘nea, R., A complete asymptotic expansion for the quasiinterpolants of Gauß–Weierstraß operators, Mediterr. J. Math., 15(2018), Online First.
Abel, U., Butzer, P.L., Complete asymptotic expansion for generalized Favard operators, Constr. Approx., 35(2012), 73–88.
Abel, U., Ivan, M., Simultaneous approximation by Altomare operators, Proceedings of the 6th international conference on functional analysis and approximation theory, Acquafredda di Maratea (Potenza), Italy, Sept. 24–30, 2009, Palermo: Circolo Matema`tico di Palermo, Rend. Circ. Mat. Palermo, Serie II, Suppl., 82(2010), 177–193.
Abramowitz, M., Stegun, A., Handbook of Mathematical Functions, Appl. Math. Ser. 55, National Bureau of Standards, Washington D.C., 1972.
Altomare, F., Milella, S., Integral-type operators on continuous function spaces on the real line, J. Approx. Theory 152(2008), 107–124.
Altomare, F., Campiti, M., Korovkin-type Approximation Theory and its Applications, de Gruyter Studies in Mathematics 17, W. de Gruyter, Berlin, New York, 1994.
Butzer, P.L., Nessel, R.J., Fourier Analysis and Approximation, Birkh¨auser Verlag, Basel, 1971.
Gautschi, W., Orthogonal Polynomials, Oxford University Press, 2004.
Gould, H.W., Combinatorial Identities, Morgantown Print & Bind., Morgantown, WV, 1972.
Sablonni`ere, P., Weierstrass quasi-interpolants, J. Approx. Theory, 180(2014), 32–48. [12] Watson, G.N., A note on gamma functions, Proc. Edinb. Math. Soc., 2(11)(1958/59); Edinburgh Math. Notes, 42(1959), 7–9.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2019 Studia Universitatis Babeș-Bolyai Mathematica
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.