Properties of absolute-∗-k-paranormal operators and contractions for ∗-A(k) operators

Authors

  • Ilmi HOXHA Faculty of Education, University of Gjakova ”Fehmi Agani” Avenue ”Ismail Qemali” nn, Gjakov¨e, 50000, Kosova, e-mail: ilmihoxha011@gmail.com
  • Naim L. BRAHA Department of Mathematics and Computer Sciences, University of Prishtina Avenue ”George Bush” nn, Prishtin¨e, 10000, Kosova, e-mail: nbraha@yahoo.com https://orcid.org/0000-0001-8335-1129
  • Agron TATO Department of Mathematics Polytechnic University of Tirana, Albania, e-mail: agtato@gmail.com

DOI:

https://doi.org/10.24193/subbmath.2019.1.11

Keywords:

Class ∗-A(k) operators, absolute-∗-k-paranormal operators, normaloid operators, continuity spectrum, contractions.

Abstract

First, we see if T is absolute-∗-k-paranormal for k ≥ 1, then T is a normaloid operator. We also see some properties of absolute-∗-k-paranormal operator and ∗-A(k) operator. Then, we will prove the spectrum continuity of the class ∗-A(k) operator for k > 0. Moreover, it is proved that if T is a contraction of the class ∗-A(k) for k > 0, then either T has a nontrivial invariant subspace or T is a proper contraction, and the nonnegative operator   1       D = T ∗|T |2k k+1 − |T ∗|2 is a strongly stable contraction. Finally if T ∈ ∗-A(k) is a contraction for k > 0, then T is the direct sum of a unitary and C·0 (c.n.u) contraction.

Mathematics Subject Classification (2010): 47A10, 47B37, 15A18.

References

Arora, S.C., Thukral, J.K., On a class of operators, Glas. Math. Ser. III, Vol 21, 41(1986), 381-386.

Berberian, S.K., Approximate proper vectors, Proc. Amer. Math. Soc., 10(1959), 175-182.

Braha, N.L., Hoxha, I., Mecheri, S., On class A(k∗) operators, Ann. Funct. Anal., 6(2015), no. 4, 90-106.

Mc Carthy, C.A., Cp, Israel J. Math., 5(1967) 249-271.

Duggal, B.P., Jeon, I.H., Kim, I.H., On ∗-paranormal contractions and properties for ∗-class A operators, Linear Algebra Appl., 436(2012), no. 5, 954-962.

Duggal, B.P., Jeon, I.H., Kim, I.H., Continuity of the spectrum on a class of upper triangular operator matrices, J. Math. Anal. Appl., 370(2010), 584-587.

Duggal, B.P., Jeon, I.H., Kim, I.H., Contractions without non-trivial invariant subspaces satisfying a positivity condition, J. Inequal. Appl., 2016, Paper No. 116, 8 pp.

Duggal, B.P., Cubrusly, C.S., Paranormal contractions have property PF, Far East J. Math. Sci., 14(2004), 237-249.

Duggal, B.P., On Characterising contractions with C10 pure part, Integral Equations Operator Theory, 27(1997), 314-323.

Durszt, E., Contractions as restricted shifts, Acta Sci. Math. (Szeged), 48(1985), 129- 134.

Furuta, T., On the class of paranormal operators, Proc. Jap. Acad., 43(1967), 594-598. [12] Furuta, T., Invitation to Linear Operators, Taylor and Francis Group, 2001.

Furuta, T., Ito, M., Yamazaki, T., A subclass of paranormal operators including class of log-hyponormal and several classes, Sci. Math., 1(1998), no. 3, 389-403.

Gao, F., Li, X., On ∗-class A contractions, J. Inequal. Appl., 2013, 2013:239.

Halmos, P.R., A Hilbert Space Problem Book, Springer-Verlag, New York, 1982 [16] Hansen, F., An operator inequality, Math. Ann., 246(1980) 249-250.

Hoxha, I., Braha, N.L., The k-quasi-∗-class A contractions have property PF, J. Inequal. Appl., 2014, 2014:433.

Kubrusly, C.S., Levan, N., Proper contractions and invariant subspace, Internat. J. Math. Sci., 28(2001), 223-230.

Lee, W.Y., Lecture Notes on Operator Theory, Seoul 2008.

Mecheri, S., Spectral properties of k-quasi-∗-class A operators, Studia Math., 208(2012), 87-96.

Nagy, B. Sz., Foia¸s, C., Harmonic Analysis of Operators on Hilbert Space, North-Holland, Amsterdam, 1970.

Newburgh, J.D., The variation of Spectra, Duke Math. J., 18(1951), 165-176

Pagacz, P., On Wold−type decomposition, Linear Algebra Appl., 436(2012), 3065-3071. [24] Panayappan, S., Radharamani, A., A note on p-∗-paranormal operators and absolute k∗-paranormal operators, Int. J. Math. Anal., 2(2008), no. 25-28, 1257-1261.

Sanchez-Perales, S., Cruz-Barriguete, V.A., Continuity of approximate point spectrum on the algebra B(X), Commun. Korean Math. Soc., 28(2013), no. 3, 487-500.

Yang, C., Shen, J., Spectrum of class absolute-∗-k-paranormal operators for 0 < k ≤ 1, Filomat, 27(2013), no. 4, 672-678.

Downloads

Published

2019-03-20

How to Cite

HOXHA, I., BRAHA, N. L., & TATO, A. (2019). Properties of absolute-∗-k-paranormal operators and contractions for ∗-A(k) operators. Studia Universitatis Babeș-Bolyai Mathematica, 64(1), 119–132. https://doi.org/10.24193/subbmath.2019.1.11

Issue

Section

Articles

Similar Articles

<< < 6 7 8 9 10 11 12 13 14 15 > >> 

You may also start an advanced similarity search for this article.