Wirtinger type inequalities via fractional integral operators
DOI:
https://doi.org/10.24193/subbmath.2019.1.04Keywords:
Fractional derivative, fractional integral, Wirtinger inequality.Abstract
In this study, we shall present Wirtinger type inequality in the fractional case with conformable fractional operators.
Mathematics Subject Classification (2010): 26A33, 26Dxx, 35A23.
References
Abdeljawad, T., On conformable fractional calculus, J. Comput. Appl. Math., 279(2015), 57-66.
Agarwal, R.P., Difference Equations and Inequalities. Theory, Methods, and Applications, Marcel Dekker, 1992.
Agarwal, R.P., O’Regan, D., Saker, S., Dynamic Inequalities on Time Scales, Springer, 2014.
Akin, E., Aslıyu¨ce, S., Gu¨venilir, A.F., Kaymakcalan, B., Discrete Gru¨ss type inequality on fractional calculus, J. Inequal. Appl., (2015), 2015:174, 7 pp.
Anastassiou, G.A., Multivariate fractional representation formula and Ostrowski type inequality, Sarajevo J. Math., 22(2014), no. 1, 27-35.
Atangana, A., Baleanu, D., Alsaedi, A., New properties of conformable derivative, Open Math., 13(2015), 889-898.
Baleanu, D., Diethelm, K., Scalas, E., Trujillo, J.J., Fractional Calculus. Models and Numerical Methods. Series on Complexity, Nonlinearity and Chaos, World Scientific Publishing, 2012.
Budak, H., Sarikaya, M.Z., An inequality of Ostrowski-Gru¨ss type for double integrals, Stud. Univ. Babe¸s-Bolyai Math., 62(2017), no. 2, 163-173.
Diethelm, K., The Analysis of Fractional Differential Equations. An ApplicationOriented Exposition Using Differential Operators of Caputo Type, Springer-Verlag, 2010.
Ferreira Rui, A.C., A discrete fractional Gronwall inequality, Proc. Amer. Math. Soc., 140(2012), no. 5, 1605-1612.
Gu¨venilir, A.F., Kaymakc¸alan, B., Peterson, A.C., Ta¸s, K., Nabla discrete fractional Gru¨ss type inequality, J. Inequal. Appl., (2014), 2014:86, 9 pp.
Hardy, G.H., Littlewood, J.E., P´olya, G., Inequalities, Cambridge University Press, 1988. [13] Hilscher, R., A time scales version of a Wirtinger-type inequality and applications. Dynamic equations on time scales, J. Comput. Appl. Math., 141(2002), no. 1-2, 219-226.
Hinton, D.B., Lewis, R.T., Discrete spectra criteria for singular differential operators with middle terms, Math. Proc. Cambridge Philos. Soc., 77(1975), 337-347.
Khalil, R., Al Horani, M., Yousef, A., Sababheh, M., A new definition of fractional derivative, J. Comput. Appl. Math., 264(2014), 65-70.
Liu, K., Fridman, E., Wirtinger’s inequality and Lyapunov-based sampled-data stabilization, Automatica J. IFAC, 48(2012), no. 1, 102-108.
Mitrinovi´c, D.S., Peˇcari´c, J.E., Fink, A.M., Classical and New Inequalities in Analysis, Kluwer Academic Publishers, 1993.
Pachpatte, B.G., Mathematical Inequalities, Elsevier B.V., 2005.
Pena, S., Discrete spectra criteria for singular difference operators, Math. Bohem., 124(1999), no. 1, 35-44.
Podlubny, I., Fractional Differential Equations. An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications, Academic Press, 1999.
Sarikaya, M.Z., Gronwall type inequalities for conformable fractional integrals, Konuralp J. Math., 4(2016), no. 2, 217-222.
Seuret, A., Gouaisbaut, F., Wirtinger-based integral inequality: application to time-delay systems, Automatica J. IFAC, 49(2013), no. 9, 2860-2866.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2019 Studia Universitatis Babeș-Bolyai Mathematica
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.