Differential subordinations obtained by using a fractional operator

Authors

  • Eszter SZATMARI Babe¸s-Bolyai University Faculty of Mathematics and Computer Sciences 1, Kog˘alniceanu Street, 400084 Cluj-Napoca, Romania, e-mail: szatmari.eszter@math.ubbcluj.ro

DOI:

https://doi.org/10.24193/subbmath.2018.4.05

Keywords:

Differential subordination, analytic function, fractional operator, convex function.

Abstract

We investigate several differential subordinations using the fractional operator Dν,n : A → A, for −∞ < λ < 2, ν > −1, n ∈ N0 = {0, 1, 2, . . .}, introduced in [7].

Mathematics Subject Classification (2010): 30C45.

References

Miller, S.S., Mocanu, P.T., Differential Subordinations: Theory and Applications, Pure and Applied Mathematics No. 225, Marcel Dekker, New York, 2000.

Miller, S.S., Mocanu, P.T., On some classes of first order differential subordinations, Michigan Math. J., 32(1985), 185-195.

Owa, S., On the distortion theorems I, Kyungpook Math. J., 18(1978), 53-59.

Owa, S., Srivastava, H.M., Univalent and starlike generalized hypergeometric functions, Canad. J. Math., 39(1987), 1057-1077.

Ruscheweyh, S., New criteria for univalent functions, Proc. Amer. Math. Soc., 49(1975), 109-115.

S˘al˘agean, G.S., Subclasses of univalent functions, Lecture Notes in Math., Springer Verlag, 1013(1983), 362-372.

Sharma, P., Raina, R.K., S˘al˘agean, G.S., Some geometric properties of analytic functions involving a new fractional operator, Mediterr. J. Math., 13(2016), 4591-4605.

Szatmari, E., On a class of analytic functions defined by a fractional operator, Mediterr. J. Math., (2018), 15:158.

Downloads

Published

2018-12-20

How to Cite

SZATMARI, E. (2018). Differential subordinations obtained by using a fractional operator. Studia Universitatis Babeș-Bolyai Mathematica, 63(4), 475–482. https://doi.org/10.24193/subbmath.2018.4.05

Issue

Section

Articles

Similar Articles

<< < 4 5 6 7 8 9 10 11 12 13 > >> 

You may also start an advanced similarity search for this article.