Certain sufficient conditions for starlikeness and convexity using a multiplier transformation
DOI:
https://doi.org/10.24193/subbmath.2018.3.06Keywords:
Analytic function, parabolic starlike function, uniformly convex function, starlike function, convex function, differential subordination, multiplier transformation.Abstract
In the present paper, we study a differential subordination involving a multiplier transformation. Selecting different dominants to our main result, we obtain certain sufficient conditions for starlikeness and convexity of analytic functions. In particular, we obtain the sufficient conditions for parabolic starlikeness and uniform convexity. Some known results appear as particular cases of our main result.
Mathematics Subject Classification (2010): 30C80, 30C45.
References
Aghalary, R., Ali, R.M., Joshi, S.B., Ravichandran, V., Inequalities for analytic functions defined by certain linear operators, Int. J. Math. Sci., 4(2005), no. 2, 267-274.
Billing, S.S., Certain differential subordination involving a multiplier transformation, Scientia Magna, 8(2012), no. 1, 87-93.
Billing, S.S., Differential inequalities implying starlikeness and convexity, Acta Univ. M. Belii, ser. Math., 20(2012), 3-8.
Billing, S.S., A subordination theorem involving a multiplier transformation, Int. J. Anal. Appl., 1(2013), no. 2, 100-105.
Billing, S.S., A multiplier transformation and conditions for starlike and convex functions, Math. Sci. Res. J., 17(2013), no. 9, 239-244.
Billing, S.S., Differential inequalities and criteria for starlike and convex functions, Stud. Univ. Babe¸s-Bolyai Math., 59(2014), no. 2, 191-198.
Brar, R., Billing S.S., Certain sufficient conditions for parabolic starlike and uniformly close-to-convex functions, Stud. Univ. Babe¸s-Bolyai Math., 61(2016), no. 1, 53-62.
Cho, N.E., Kim, T.H., Multiplier transformations and stronlgy close-to-convex functions, Bull. Korean Math. Soc., 40(2003), 399-410.
Cho, N.E., Srivastava, H.M., Argument estimates of certain analytic functions defined by a class of multiplier transformations, Math. Comput. Model., 37(2003), 39-49.
Kumar, S.S., Ravichandran V., Taneja H.C., Classes of multivalent functions defined by Dziok-Srivastava linear operators, Kyungpook Math. J., 46(2006), 97-109.
Li, J., Owa, S., Properties of the s˘al˘agean operator, Georgian Math. J., 5(1998), no. 4, 361-366.
Ma, W.C., Minda, D., Uniformly convex functions, Ann. Polon. Math., 57(1992), no. 2, 165-175.
Miller, S.S., Mocanu, P.T., On some classes of first order differential subordinations, Michigan Math. J., 32(1985), 185-195.
Miller, S.S., Mocanu, P.T., Differential subordination: Theory and applications, Marcel Dekker, New York and Basel, 2000.
Owa, S., Shen, C.Y., Obradovi´c, M., Certain subcalsses of analytic functions, Tamkang J. Math., 20(1989), 105-115.
Ronning, F., Uniformly convex functions and a corresponding class of starlike functions, Proc. Amer. Math. Soc., 118(1993), no. 1, 189-196.
S˘al˘agean, G.S., Subclasses of univalent functions, Lecture Notes in Math., Springer- Verlag, Heidelberg, 1013(1983), 362-372.
Singh, S., Gupta, S., Singh, S., On a class of multivalent functions defined by a multiplier transformation, Mat. Vesnik, 60(2008), 87-94.
Singh, S., Gupta, S., Singh, S., On starlikeness and convexity of analytic functions satisfying a differential inequality, J. Inequal. Pure and Appl. Math., 9(2008), no. 3, art. 81, 1-7.
Uralegaddi, B.A., Somanatha, C., Certain classes of univalent functions, Current Topics in Analytic Function Theory, H.M. Srivastava and S. Owa (ed.), World Scientific, Singapore, 1992, 371-374.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2018 Studia Universitatis Babeș-Bolyai Mathematica
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.