”Homogeneous” second order differential equation: zeros separation principles

Authors

  • Ioan A. RUS Babe¸s-Bolyai University, Faculty of Mathematics and Computer Sciences 1, Kog˘alniceanu Street, 400084 Cluj-Napoca, Romania, e-mail: iarus@math.ubbcluj.ro

DOI:

https://doi.org/10.24193/subbmath.2018.2.08

Keywords:

Second order differential equation, first order system of differential equations, zero separation, Sturm theorem, Nicolescu theorem, Butlewski theorem, Markov theorem, zeros of special functions defined by differential equations, zero distance function, functions defined in terms of zeros of solutions, equation in the complex domain, computation of zeros by fixed point techniques, categories of linear differential equations.

Abstract

In this paper we study the following problems: Problem 1. Let I ⊂ R be an open interval and F : R3 × I → R be a continuous function with, F (0, 0, 0, x) = 0, for all x ∈ I. We consider the following differential equations ...

...

Mathematics Subject Classification (2010): 34C10, 12D10, 34B24, 33xx, 34M10.

References

Abdullah, H.Kh., On the oscillation of second order nonlinear differential equations, Inter. J. Appl. Math. Research, 3(2014), no. 1, 1-6.

Agarwal, R.P., Grace, S.R., O’Regan, D., Linearization of second order superlinear oscillation theorems, Math. Computer Modelling, 39(2004), 1165-1183.

Aharonov, D., Elias, U., On singular Sturm theorems, arXiv: 1708.06168v1, 2017. [4] Amann, H., Ordinary Differential Equations, de Gruyter, 1990.

Bailey, P., Waltman, P., On the distance between consecutive zeros for second order differential equations, J. Math. Anal. Appl., 14(1966), 23-30.

Barbu, V., Differential Equations, Springer, 2016.

Barrett, J.H., Second order complex differential equations with a real independent variable, Pacific J. Math., 8(1958), 187-200.

Barrett, L.C., Bendixen, G.E., Separation and interlacing theorems, Quart. Appl. Math., 23(1965), no. 1, 69-78.

Bor˚uvka, O., On central dispersions of the differential equations yll = q(t)y with periodic coefficients, Lecture Notes in Math., 415(1974), 47-61.

Bor˚uvka, O., Linear differential transformations of the second order, The English Universities Press, London, 1971.

Buica˘, A., Rus, I.A., S¸erban, M.A., Zero point principle of ball-near identity operators and applications to implicit operator problem, (to appear).

Butlewski, Z., Sur les z´eros des int´egrales r´eelles des equations diff´erentielles lin´eaires, Mathematica, 17(1941), 85-110.

Chicone, C., Ordinary Differential Equations with Applications, Springer, 1999.

Chuaqui, M., Gr¨ohn, J., Heittokangas, J., R¨atty¨a, J., Zero separation results for solutions of second order linear differential equations, Advances in Math., 245(2013), 382-422.

Coddington, E.A., Levinson, N., Theory of Ordinary Differential Equations, McGraw- Hill, New York, 1955.

Constantinescu, F., A new proof of a theorem of V.A. Markov using a theorem of Sturm, (Russian), Uspehi Mat. Nauk, 12(1957), no. 6, 147-148.

Corduneanu, C., Principles of Differential and Integral Equations, Chelsea Publ. Company, New York, 1977.

Craven, T., Csordas, G., On the betweenness condition of Rolle’s theorem, Rocky Mountain J. Math., 15(1985), no. 3, 721-728.

Cuculescu, I., Separarea zerourilor unei perechi de solu¸tii a unui sistem de ecua¸tii differen¸tiale, G.M.F. (Bucure¸sti), 5(1953), 194-195.

Drakhlin, M.R., On the zeros of solutions of a Riccati equation, Izv. Vyssh. Uchebn. Zaved. Mat., 1965, no. 5, 58-64.

Foia¸s, C., Gussi, G., Poenaru, V., Despre problema polilocal˘a la ecua¸tiile diferen¸tiale liniare de ordinul al doilea, Bul. S¸tiin¸tific, Mat. Fiz., 7(1955), no. 3, 699-721.

Haimovici, A., Ecua¸tii diferen¸tiale ¸si ecua¸tii integrale, Ed. Didactic˘a ¸si Pedagogica˘, Bu- cure¸sti, 1965.

Halanay, A., Differential Equations: Stability, Oscillations, Time Lags, Acad. Press, New York, 1966.

Hartman, P., Ordinary Differential Equations, John Wiley and Sons, New York, 1964.

Hille, E., Lectures on Ordinary Differential Equations, Addison-Wesley Publ. Company, 1969.

Hille, E., Ordinary Differential Equations in the Complex Domain, John Wiley and Sons, New York, 1976.

Hirsch, M.W., Smale, S., Devaney, R.L., Differential Equations, Dynamical Systems, and an Introduction to Chaos, Elsevier, 2004.

Ilea, V., Otrocol, D., Rus, I.A., Some properties of solutions of the homogeneous non- linear second order differential equations, Mathematica, 57(2015), no. 1-2, 38-43.

Ilyashenko, Y., Yakovenko, S., Lectures on Analytic Differential Equations, AMS, 2003. [30] Ionescu, D.V., Ecua¸tii diferen¸tiale ¸si integrale, Ed. Didactic˘a ¸si Pedagogica˘, Bucure¸sti, 1972.

Jordan, D.W., Smith, P., Nonlinear Ordinary Differential Equations, Oxford Univ. Press, 2007.

Kamke, E., Differentialgleichungen, I, Leipzig, 1959.

Kou, K.I., Xia, Y.-H., Linear quaternion differential equations: basic theory and fundamental results, arXiv:1510.02224v5, 2017.

Krasnoselskii, M.A., Perov, A.I., Povolockii, A.I., Zabrejko, P.P., Plane Vector Fields, Acad. Press, New York, 1966 (Moscow (1963), Berlin (1966)).

Lefschetz, S., Differential Equations: Geometric Theory, Interscience Publ., New York, 1957.

Leighton, W., The conjugacy function, Proc. Amer. Math. Soc., 24(1970), 820-823. [37] Makay, G., A simple proof for Sturm’s separation theorem, Amer. Math. Monthly, 99(1992), no. 3, 218-219.

Marx, I., On the structure of recurrence relations II, Michigan Math. J., 2(1953), 99-103. [39] Mure¸san, A.S., Tonelli’s Lemma and applications, Carpathian J. Math., 28(2012), no. 1, 103-110.

Nemytskii, V., Stepanov, V., Qualitative Theory of Differential Equations, Princeton Univ. Press, Princeton, 1960 (Moscow, 1949).

Neuman, F., Global Properties of Linear Ordinary Differential Equations, Kluwer, 1991. [42] Nicolescu, M., Sur le th´eor`eme de Sturm, Mathematica (Cluj), 1(1929), 111-114.

Pinkus, A., Ziegler, Z., Interlacing properties of the zeros of the error functions in best Lp-approximations, J. Appr. Theory, 27(1979), 1-18.

Polyanin, A.D., Zaitsev, V.F., Handbook of Exact Solutions for Ordinary Differential Equations, Chapman and Hall/CRC, 2002.

Precup, R., Ordinary Differential Equations, de Gruyter, 2018.

Protter, M.H., Weinberger, H.F., Maximum Principles in Differential Equations, Springer, 1984.

Reid, W.T., Sturm Theory for Ordinary Differential Equations, Springer, 1980.

Rus, I.A., Teoreme de tip Sturm, Studia Univ. Babe¸s-Bolyai, 1(1961), no. 1, 131-136. [49] Rus, I.A., Asupra unor theoreme de tip Sturm, Studia Univ. Babe¸s-Bolyai, Mat.-Fiz., 2(1962), 33-36.[50] Rus, I.A., Asupra r˘ada˘cinilor componentelor solu¸tiilor unui sistem de doua˘ ecua¸tidiferen¸tiale de ordinul ˆıntaˆi, Studii ¸si Cerceta˘ri de Matematica˘ (Cluj), 14(1963), no. 1, 151-156.

Rus, I.A., Familii de func¸tii cu proprietatea lui Sturm, Studia Univ. Babe¸s-Bolyai, Mat.- Fiz., 1(1966), 37-40.

Rus, I.A., Cˆateva propriet˘a¸ti ale zerourilor componentelor solu¸tiilor unui sistem de doua˘ ecua¸tii diferen¸tiale neliniare de ordinul I, Studii ¸si Cerceta˘ri Matematice (Bucure¸sti), 18(1966), no. 10, 1549-1553.

Rus, I.A., Open problem Nr. 5, Glasnik Matematiˇcki, 4(1969), no. 1, 170.

Rus, I.A., Separation theorems for the zeros of some real functions, Mathematica, 27(1985), no. 1, 43-46.

Rus, I.A., Ecua¸tii diferen¸tiale, ecua¸tii integrale ¸si sisteme dinamice, Transilvania Press, Cluj-Napoca, 1996.

Sadyrbaev, F., Multiplicity of solution for two-point boundary value problems with asymptotically asymmetric nonlinearities, Univ. Catholique de Louvain, no. 41, 1994.

Sansone, G., Equazioni differenziali nel campo reale, Zanichelli, Bologna, I(1940), II(1949).

Sansone, G., Conti, R., Equazioni differenziali non lineari, Ed. Cremonesse, Roma, 1956. [59] Segura, J., The zeros of special functions from a fixed point method, SIAM J. Numer. Anal., 40(2002), no. 1, 114-133.

Segura, J., Some analytical and numerical consequences of Sturm theorems, Adv. Dyn. Syst. Appl., 8(2013), no. 2, 327-347.

Swanson, C.A., Comparison and Oscillation Theory of Linear Differential Equations, Acad. Press, New York, 1968.

Teodorescu, N., Olariu, V., Ecua¸tii diferen¸tiale ¸si cu derivate par¸tiale, Vol. I, Ed. Tehnic˘a, Bucure¸sti, 1978.

Tonelli, L., Un’osservazione su di un teorema di Sturm, Boll. UMI, 6(1927), 126-128. [64] Tricomi, F., Equazioni differenziali, Scientifiche Einaudi, 1953.

Vishnyakova, A., Zero separation of polynomials and hyperbolicity preserving linear op- erators, Shanghai, 2015.

Walker, P., Separation of the zeros of polynomials, Amer. Math. Monthly, 100(1993), 272-273.

Wong, J.S.W., Oscillation criteria for second order nonlinear differential equations with integrable coefficients, Proc. Amer. Math. Soc., 115(1992), no. 2, 389-395.

Zwillinger, D., Handbook of Differential Equations, Acad. Press, New York, 1997.

Downloads

Published

2018-06-30

How to Cite

RUS, I. A. (2018). ”Homogeneous” second order differential equation: zeros separation principles. Studia Universitatis Babeș-Bolyai Mathematica, 63(2), 245–256. https://doi.org/10.24193/subbmath.2018.2.08

Issue

Section

Articles

Similar Articles

<< < 5 6 7 8 9 10 11 12 13 14 > >> 

You may also start an advanced similarity search for this article.