Extended local convergence analysis of inexact Gauss-Newton method for singular systems of equations under weak conditions

Authors

DOI:

https://doi.org/10.24193/subbmath.2017.4.11

Keywords:

Gauss-Newton method, local convergence, restricted convergence domains, majorant function, center-majorant function, convergence ball.

Abstract

A new local convergence analysis of the Gauss-Newton method for solving some optimization problems is presented using restricted convergence domains. The results extend the applicability of the Gauss-Newton method under the same computational cost given in earlier studies. In particular, the advantages are: the error estimates on the distances involved are tighter and the convergence ball is at least as large. Moreover, the majorant function in contrast to earlier studies is not necessarily differentiable. Numerical examples are also provided in this study.

Mathematics Subject Classification (2010): 65D10, 65D99, 65G99, 65K10, 90C30.

References

Amat, S., Busquier, S., Guti´errez, J.M., Geometric constructions of iterative functions to solve nonlinear equations, J. Comput. Appl. Math., 157(2003), 197-205.

Argyros, I.K., Computational theory of iterative methods, Studies in Computational Mathematics, 15, Editors: K. Chui and L. Wuytack, Elsevier, New York, U.S.A., 2007.

Argyros, I.K., Concerning the convergence of Newton’s method and quadratic majorants, J. Appl. Math. Comput., 29(2009), 391-400.

Argyros, I.K., A semilocal convergence analysis for directional Newton methods, Mathematics of Computation, AMS, 80(2011), 327-343.

Argyros, I.K., Cho, Y.J., Hilout, S., Numerical methods for equations and its applications, CRC Press/Taylor and Francis Group, New-York, 2012.

Argyros, I.K., Gonza´lez, D., Local convergence analysis of inexact Gauss-Newton method for singular systems of equations under majorant and center-majorant condition, SeMA, 69(2015), no. 1, 37-51.

Argyros, I.K., Hilout, S., On the Gauss-Newton method, J. Appl. Math., (2010), 1-14.

Argyros, I.K., Hilout, S., Extending the applicability of the Gauss-Newton method under average Lipschitz-conditions, Numer. Alg., 58(2011), 23-52.

Argyros, I.K., Hilout, S., On the solution of systems of equations with constant rank derivatives, Numer. Algor., 57(2011), 235-253.

Argyros, I.K., Hilout, S., Improved local convergence of Newton’s method under weaker majorant condition, J. Comput. Appl. Math., 236(2012), no. 7, 1892-1902.

Argyros, I.K., Hilout, S., Weaker conditions for the convergence of Newton’s method, J. Complexity, 28(2012), 364-387.

Argyros, I.K., Hilout, S., Computational Methods in Nonlinear Analysis, World Scientific Publ. Comp., New Jersey, 2013.

Ben-Israel, A., Greville, T.N.E., Generalized inverses, CMS Books in Mathemat- ics/Ouvrages de Mathematiques de la SMC, 15. Springer-Verlag, New York, Second Edition, Theory and Applications, 2003.

Burke, J.V., Ferris, M.C., A Gauss-Newton method for convex composite optimization, Math. Programming Ser A., 71(1995), 179-194.

Chen, J., The convergence analysis of inexact Gauss-Newton, Comput. Optim. Appl., 40(2008), 97-118.

Chen, J., Li, W., Convergence behaviour of inexact Newton methods under weak Lipschitz condition, J. Comput. Appl. Math., 191(2006), 143-164.

Dedieu, J.P., Kim, M.H., Newton’s method for analytic systems of equations with con- stant rank derivatives, J. Complexity, 18(2002), 187-209.

Dedieu, J.P., Shub, M., Newton’s method for overdetermined systems of equations, Math. Comput., 69(2000), 1099-1115.

Dembo, R.S., Eisenstat, S.C., Steihaug, T., Inexact Newton methods, SIAM J. Numer. Anal., 19(1982), 400-408.

Deuflhard, P., Heindl, G., Affine invariant convergence theorems for Newton’s method and extensions to related methods, SIAM J. Numer. Anal., 16(1979), 1-10.

Ferreira, O.P., Local convergence of Newton’s method in Banach space from the viewpoint of the majorant principle, IMA J. Numer. Anal., 29(2009), 746-759.

Ferreira, O.P., Local convergence of Newton’s method under majorant condition, J. Com- put. Appl. Math., 235(2011), 1515-1522.

Ferreira, O.P., Gonc¸alves, M.L.N., Local convergence analysis of inexact Newton-like methods under majorant condition, Comput. Optim. Appl., 48(2011), 1-21.

Ferreira, O.P., Gon¸calves, M.L.N., Oliveira, P.R., Local convergence analysis of the Gauss-Newton method under a majorant condition, J. Complexity, 27(2011), 111-125.

Ferreira, O.P., Gonc¸alves, M.L.N., Oliveira, P.R., Local convergence analysis of inexact Gauss-Newton like method under majorant condition, J. Comput. Appl. Math., 236(2012), 2487-2498.

Gon¸calves, M.L.N., Oliveira, P.R., Convergence of the Gauss-Newton method for a special class of systems of equations under a majorant condition, Optimiz., 64(2013), no. 3, 577-594.

H¨aussler, W.M., A Kantorovich-type convergence analysis for the Gauss-Newton method, Numer. Math., 48(1986), 119-125.

Hiriart-Urruty, J.B., Lemar´echal, C., Convex Analysis and Minimization Algorithms (two volumes), I. Fundamentals, II. Advanced Theory and Bundle Methods, 305 and 306, Springer-Verlag, Berlin, 1993.

Kantorovich, L.V., Akilov, G.P., Functional Analysis, Pergamon Press, Oxford, 1982. [30] Li, C., Ng, K.F., Majorizing functions and convergence of the Gauss-Newton method for convex composite optimization, SIAM J. Optim., 18(2007), no. 2, 613-692.

Li, C., Hu, N., Wang, J., Convergence behaviour of Gauss-Newton’s method and extensions of Smale point estimate theory, J. Complexity, 26(2010), 268-295.

Morini, B., Convergence behaviour of inexact Newton methods, Math. Comput., 68(1999), 1605-1613.

Potra, F.A., Pt´ak, V., Nondiscrete induction and iterative processes, Pitman, 1994. [34] Robinson, S.M., Extension of Newton’s method to nonlinear functions with values in a cone, Numer. Math., 19(1972), 341-347.

Rockafellar, R.T., Convex Analysis, Princeton Mathematical Series, 28, Princeton University Press, Princeton, N.J., 1970.

Shub, M., Smale, S., Complexity of B´ezout’s theorem, IV: Probability of success extensions, SIAM J. Numer. Anal., 33(1996), 128-148.

Smale, S., Newton’s method estimates from data at one point, The merging of disciplines: new directions in pure, applied, and computational mathematics (Laramie, Wyo., 1985), 185-196, Springer, New York, 1986.

Wang, W., Convergence of Newton’s method and uniqueness of the solution of equations in Banach space, IMA J. Numer. Anal., 20(2000), 123-134.

Xu, X., Li, C., Convergence of Newton’s method for systems of equations with constant rank derivatives, J. Comput. Math., 25(2007), 705-718.

Xu, X., Li, C., Convergence criterion of Newton’s method for singular systems with constant rank derivatives, J. Math. Anal. Appl., 345(2008), 689-701.

Ypma, T.J., Local convergence of inexact Newton’s methods, SIAM J. Numer. Anal., 21(1984), 583-590.

Zhou, F., An analysis on local convergence of inexact Newton-Gauss method solving singular systems of equations, Sci. World J., (2014), Article ID 752673.

Zhou, F., On local convergence analysis of inexact Newton method for singular systems of equations under majorant condition, The Scientific World Journal, 2014(2014), Article ID 498016.

Downloads

Published

2017-12-30

How to Cite

ARGYROS , I. K., & GEORGE, S. (2017). Extended local convergence analysis of inexact Gauss-Newton method for singular systems of equations under weak conditions. Studia Universitatis Babeș-Bolyai Mathematica, 62(4), 543–558. https://doi.org/10.24193/subbmath.2017.4.11

Issue

Section

Articles

Most read articles by the same author(s)

Similar Articles

<< < 7 8 9 10 11 12 13 14 15 16 > >> 

You may also start an advanced similarity search for this article.