A study of tube-like surfaces according to type 2 Bishop frame in Euclidean space

Authors

  • Hossam S. ABDEL-AZIZ Department of Mathematics Faculty of Science Sohag University 82524, Sohag, Egypt, e-mail: habdelaziz2005@yahoo.com

DOI:

https://doi.org/10.24193/subbmath.2017.2.10

Keywords:

Tube-like surface, Weingarten and linear Weingarten surfaces, Gaussian and mean curvature functions, second Gaussian curvature, Type 2 Bishop frame, Euclidean space.

Abstract

The main goal of this paper is the study of the classical differential geometry of a special kind of tube surfaces, so-called tube-like surface in 3- dimensional Euclidean space E3. It is generated by sweeping a space curve along another central space curve. In particular, the type 2 Bishop frame is considered and some important theorems are obtained for that one. Finally, an application is presented and plotted using computer aided geometric design.

Mathematics Subject Classification (2010): 53A04, 56B34, 53B25.

References

Abdel-Aziz, H.S., Khalifa Saad, M., Weingarten timelike tube surfaces around a spacelike curve, Int. J. of Math. Analysis, 25(2011), no. 5, 1225-1236.

Abdel-Aziz, H.S., Khalifa Saad, M., Sezai Kiziltug, Parallel Surfaces of Weingarten Type in Minkowski 3-Space, Int. Math. Forum, 4(2012), no. 7, 2293-2302.

Baikoussis, C., Koufogiorgos, T., On the inner curvature of the second fundamental form of helicoidal surfaces, Arch. Math., 68(1997), no. 2, 169-176.

Bishop, L.R., There is more than one way to frame a curve, The American Mathematical Monthly, 82(1975), no. 3, 246-251.

Bu¨kcu¨, B., Karacan, M.K., Special Bishop motion and Bishop Darboux rotation axis of the space curve, The Journal of Dynamical Systems and Geometric Theories, 6(2008), 27-34.

Bu¨kcu¨, B., Karacan, M.K., On the slant helices according to Bishop frame of the timelike curve in Lorentzian space, Tamkang Journal of Mathematics, 39(2008), no. 3, 255-262.

Bu¨kcu¨, B., Karacan, M.K., The slant helices according to Bishop frame, International Journal of Computational and Mathematical Sciences, 3(2009), no. 2, 67-70.

Dillen, F., Ku¨hnel, W., Ruled Weingarten surfaces in a Minkowski 3-space, Manuscripta Math, 98(1999), 307-320.

Do˘gan, F., A note on tubes, Int. J. of Phys. and Math. Sciences, 3(2013), no. 1, 98-105. [10] Karacan, M.K., Bu¨kcu¨, B., Yuksel, N., On the dual Bishop Darboux rotation axis of the dual space curve, Applied Sciences, 10(2008), 115-120.

Kiziltug˘, S., On characterization of inextensible flows of curves according to type-2 Bishop frame E3, Mathematical and Computational Applications, 19(2014), no. 1, 69-77.

Kim, H.Y., Yoon, D.W., Classification of ruled surfaces in a Minkowski 3-space, J. Geom. Phys., 49(2004), 89-100.

Kim, H.Y., Yoon, D.W., Weingarten quadric surfaces in a Euclidean 3-space, Turk. J. Math, 35 (2011), 479-485.

Lopez, R., On linear Weingarten surfaces, International J. Math., 19(2008), 439-448. [15] Lopez, R., Special Weingarten surfaces foliated by circles, Monatsh. Math., 154(2008), 289-302.

Lopez, R., Parabolic Weingarten surfaces in hyperbolic space, Publ. Math. Debrecen, 74(2009), 59-80.

Munteanu, M.I., Nistor, A.I., Polynomial translation Weingarten surfaces in 3- dimensional Euclidean space, Differential geometry, Worled Sci. Publ., Hackensack, NJ, (2009), 316-320.

O’Neill, B., Elementary Differential Geometry, Academic Press, New York, 1966.

Ozyilmaz, E., Classical differential geometry of curves according to type-2 Bishop trihedra, Mathematical & Computational Applications, 16(2011), no. 4, 858-867.

Petrovi´c, M., Verstraelen, J., Verstraelen, L., Principal normal spectral variations of space curves, Proyecciones, 19(2000), no. 2, 141-155.

Ro, J., Yoon, D.W., Tubes of Weingarten types in a Euclidean 3-space, J. Chungcheong Math. Soc., 22(2009), no. 3, 359-366.

Shifrin, T., Differential geometry: A first course in curves and surfaces, Preliminary Version, Springer, 2015.

Souror, A.H., Weingarten tube-like surfaces in Euclidean 3-space, Stud. Univ. Babe¸s- Bolyai Math., 61(2016), no. 2, 239-250.

Sodsiri, W., Ruled surfaces of Weingarten type in Minkowski 3-space, PhD. thesis, Katholieke Universiteit Leuven, Belgium, 2005.

Su¨ha, Y., Bishop spherical images of a spacelike curve in Minkowski 3-space, Interna- tional Journal of Physical Sciences, 5(2010), no. 6, 898-905.

Van-Brunt, Grant, K., Potential applications of Weingarten surfaces in CAGD, Part I: Weingarten surfaces and surface shape investigation, Comput. Aided Geom. Des, 13(1996), 569-582.

Weingarten, J., Ueber eine Klasse auf einander abwickelbarer Flaachen, J. Reine Angew. Math., 59(1861), 382-393.

Weingarten, J., Ueber die Flachen derer Normalen eine gegebene Flache beruhren, J. Reine Angew. Math., 62(1863), 61-63.

Yılmaz, S., Turgut, M., A new version of Bishop frame and an application to spherical images, Journal of Mathematical Analysis and Applications, 371(2010), no. 2, 764-776. [30] Yilmaz, T., Murat, K.K., Differential Geometry of three dimensions, Syndic of Cambridge University Press, 1981.

Yoon, D.W., Jun, J.S., Non-degenerate quadric surfaces in Euclidean 3-space, Int. J. Math. Anal., 6(2012), no. 52, 2555-2562.

Downloads

Published

2017-06-15

How to Cite

ABDEL-AZIZ , H. S. (2017). A study of tube-like surfaces according to type 2 Bishop frame in Euclidean space. Studia Universitatis Babeș-Bolyai Mathematica, 62(2), 249–259. https://doi.org/10.24193/subbmath.2017.2.10

Issue

Section

Articles

Similar Articles

<< < 19 20 21 22 23 24 25 26 27 28 > >> 

You may also start an advanced similarity search for this article.