Properties of m-complex symmetric operators
DOI:
https://doi.org/10.24193/subbmath.2017.2.09Keywords:
Conjugation, m-complex symmetric operator, nilpotent perturbations, decomposable, Weyl type theorems.Abstract
In this paper, we study several properties of m-complex symmetric operators. In particular, we prove that if T ∈ L(H) is an m-complex symmetric operator and N is a nilpotent operator of order n > 2 with TN = NT , then T +N is a (2n+m−2)-complex symmetric operator. Moreover, we investigate the decomposability of T + A and TA where T is an m-complex symmetric operator and A is an algebraic operator. Finally, we provide various spectral relations of such operators. As some applications of these results, we discuss Weyl type theorems for such operators.
Mathematics Subject Classification (2010): 47A11, 47B25.
References
Aiena, P., Fredholm and local spectral theory with applications to multipliers, Kluwer Academic Publ., 2004.
Agler, J., Sub-Jordan operators: Bishop’s theorem, spectral inclusion, and spectral sets, J. Oper. Theory, 7(1982), no. 2, 373-395.
Aiena, P., Colasante, M.L., Gonza´lez, M., Operators which have a closed quasi-nilpotent part, Proc. Amer. Math. Soc., 130(2002), 2701-2710.
Amouch, M., Zguitti, H., On the equivalence of Browder’s and generalized Browder’s theorem, Glasgow Math. J., 48(2006), 179-185.
Berkani, M., Koliha, J.J., Weyl type theorems for bounded linear operators, Acta Sci. Math., 69(2003), 359-376.
Bermu´dez, T., Martino´n, A., Mu¨ller, V., Noda, J., Perturbation of m-isometries by nilpotent operators, Abstr. Appl. Anal., 2(2014), 313-328.
Berkani, M., On a class of quasi-Fredholm operators, Int. Eq. Op. Th., 34(1999), 244-249. [8] Ch¯o, M., Ota, S., Tanahashi, K., Uchiyama, M., Spectral properties of m-isometric operators, Functional Analysis, Application and Computation, 4(2012), no. 2, 33-39.
Ch¯o, M., Ko, E., Lee, J., On m-complex symmetric operators, Mediterranean Journal of Mathematics, 13(2016), no. 4, 2025-2038.
Ch¯o, M., Ko, E., Lee, J., On m-complex symmetric operators, II, Mediterranean Journal of Mathematics, 13(2016), no. 5, 3255-3264.
Colojoara, I., Foias, C., Theory of generalized spectral operators, Gordon and Breach, New York, 1968.
Eschmeier, J., Invariant subspaces for operators with Bishop’s property (β) and thick spectrum, J. Funct. Anal., 94(1990), 196-222.
Garcia, S.R., Aluthge transforms of complex symmetric operators and applications, Int. Eq. Op. Th., 60(2008), 357-367.
Garcia, S.R., Putinar, M., Complex symmetric operators and applications, Trans. Amer. Math. Soc., 358(2006), 1285-1315.
Garcia, S.R., Putinar, M., Complex symmetric operators and applications, II, Trans. Amer. Math. Soc., 359(2007), 3913-3931.
Garcia, S.R., Wogen, W.R., Some new classes of complex symmetric operators, Trans. Amer. Math. Soc., 362(2010), 6065-6077.
Halmos, P.R., A Hilbert space problem book, Springer-Verlag, Berlin - Heidelberg - New York, 1980.
Helton, J.W., Operators with a representation as multiplication by x on a Sobolev space, Colloquia Math. Soc. Janos Bolyai, 5, Hilbert Space Operators, Tihany, Hungary, 1970, 279-287.
Jung, S., Ko, E., Lee, M., Lee, J., On local spectral properties of complex symmetric operators, J. Math. Anal. Appl., 379(2011), 325-333.
Laursen, K., Neumann, M., An introduction to local spectral theory, Clarendon Press, Oxford, 2000.
McCullough, S., Rodman, L., Hereditary classes of operators and matrices, Amer. Math. Monthly, 104(1997), no. 5, 415-430.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2017 Studia Universitatis Babeș-Bolyai Mathematica
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.