Properties of m-complex symmetric operators

Authors

  • Muneo CHŌ Department of Mathematics Kanagawa University Hiratsuka 259-1293, Japan, e-mail: chiyom01@kanagawa-u.ac.jp
  • Eungil KO Department of Mathematics Ewha Womans University Seoul 120-750, Korea, e-mail: eiko@ewha.ac.kr
  • Ji Eun LEE Department of Mathematics and Statistics Sejong University Seoul 143-747, Korea, e-mail: jieun7@ewhain.net; jieunlee7@sejong.ac.kr

DOI:

https://doi.org/10.24193/subbmath.2017.2.09

Keywords:

Conjugation, m-complex symmetric operator, nilpotent perturbations, decomposable, Weyl type theorems.

Abstract

In this paper, we study several properties of m-complex symmetric operators. In particular, we prove that if T ∈ L(H) is an m-complex symmetric operator and N is a nilpotent operator of order n > 2 with TN = NT , then T +N is a (2n+m−2)-complex symmetric operator. Moreover, we investigate the decomposability of T + A and TA where T is an m-complex symmetric operator and A is an algebraic operator. Finally, we provide various spectral relations of such operators. As some applications of these results, we discuss Weyl type theorems for such operators.

Mathematics Subject Classification (2010): 47A11, 47B25.

References

Aiena, P., Fredholm and local spectral theory with applications to multipliers, Kluwer Academic Publ., 2004.

Agler, J., Sub-Jordan operators: Bishop’s theorem, spectral inclusion, and spectral sets, J. Oper. Theory, 7(1982), no. 2, 373-395.

Aiena, P., Colasante, M.L., Gonza´lez, M., Operators which have a closed quasi-nilpotent part, Proc. Amer. Math. Soc., 130(2002), 2701-2710.

Amouch, M., Zguitti, H., On the equivalence of Browder’s and generalized Browder’s theorem, Glasgow Math. J., 48(2006), 179-185.

Berkani, M., Koliha, J.J., Weyl type theorems for bounded linear operators, Acta Sci. Math., 69(2003), 359-376.

Bermu´dez, T., Martino´n, A., Mu¨ller, V., Noda, J., Perturbation of m-isometries by nilpotent operators, Abstr. Appl. Anal., 2(2014), 313-328.

Berkani, M., On a class of quasi-Fredholm operators, Int. Eq. Op. Th., 34(1999), 244-249. [8] Ch¯o, M., Ota, S., Tanahashi, K., Uchiyama, M., Spectral properties of m-isometric operators, Functional Analysis, Application and Computation, 4(2012), no. 2, 33-39.

Ch¯o, M., Ko, E., Lee, J., On m-complex symmetric operators, Mediterranean Journal of Mathematics, 13(2016), no. 4, 2025-2038.

Ch¯o, M., Ko, E., Lee, J., On m-complex symmetric operators, II, Mediterranean Journal of Mathematics, 13(2016), no. 5, 3255-3264.

Colojoara, I., Foias, C., Theory of generalized spectral operators, Gordon and Breach, New York, 1968.

Eschmeier, J., Invariant subspaces for operators with Bishop’s property (β) and thick spectrum, J. Funct. Anal., 94(1990), 196-222.

Garcia, S.R., Aluthge transforms of complex symmetric operators and applications, Int. Eq. Op. Th., 60(2008), 357-367.

Garcia, S.R., Putinar, M., Complex symmetric operators and applications, Trans. Amer. Math. Soc., 358(2006), 1285-1315.

Garcia, S.R., Putinar, M., Complex symmetric operators and applications, II, Trans. Amer. Math. Soc., 359(2007), 3913-3931.

Garcia, S.R., Wogen, W.R., Some new classes of complex symmetric operators, Trans. Amer. Math. Soc., 362(2010), 6065-6077.

Halmos, P.R., A Hilbert space problem book, Springer-Verlag, Berlin - Heidelberg - New York, 1980.

Helton, J.W., Operators with a representation as multiplication by x on a Sobolev space, Colloquia Math. Soc. Janos Bolyai, 5, Hilbert Space Operators, Tihany, Hungary, 1970, 279-287.

Jung, S., Ko, E., Lee, M., Lee, J., On local spectral properties of complex symmetric operators, J. Math. Anal. Appl., 379(2011), 325-333.

Laursen, K., Neumann, M., An introduction to local spectral theory, Clarendon Press, Oxford, 2000.

McCullough, S., Rodman, L., Hereditary classes of operators and matrices, Amer. Math. Monthly, 104(1997), no. 5, 415-430.

Downloads

Published

2017-06-15

How to Cite

CHŌ, M., KO, E., & LEE, J. E. (2017). Properties of m-complex symmetric operators. Studia Universitatis Babeș-Bolyai Mathematica, 62(2), 233–248. https://doi.org/10.24193/subbmath.2017.2.09

Issue

Section

Articles

Similar Articles

<< < 8 9 10 11 12 13 14 15 16 17 > >> 

You may also start an advanced similarity search for this article.