The first Zolotarev case in the Erdös-Szegö solution to a Markov-type extremal problem of Schur

Authors

  • Heinz-Joachim RACK Heinz-Joachim RACK Dr. Rack Consulting GmbH Steubenstrasse 26 a 58097 Hagen, Germany, e-mail: heinz-joachim.rack@drrack.com

DOI:

https://doi.org/10.24193/subbmath.2017.2.02

Keywords:

Chebyshev, derivative, Erdös extremal problem, inequality, Markov, polynomial, quartic, Schur, Shadrin, Szegö, Zolotarev.

Abstract

Schur’s [14] Markov-type extremal problem asks to find the maximum (1) (2) (1)  sup  sup |Pn  (ξ)|, where Bn,ξ,2 = {Pn Bn : Pn  (ξ) = 0} ⊂ Bn =−1≤ξ≤1 Pn Bn,ξ,2 {Pn : |Pn(x)| ≤ 1 for |x| ≤ 1} and Pn is an algebraic polynomial of degree ≤ n. Erdo¨s and Szego¨ [3] found that for n ≥ 4 this maximum is attained if ξ = ±1 and Pn Bn,ξ,2 is a (unspecified) member of the 1-parameter family of hard-core Zolotarev polynomials Zn,t. Our first result centers around the proof in [3] for the initial case n = 4 and is three-fold: (i) the numerical value for (1) in ([3], (7.9)) is not correct, but sufficiently precise; (ii) from preliminary work in [3] can in fact be deduced a closed analytic expression for (1) if n = 4, allowing numerical evaluation to any precision; (iii) even the explicit power form representation of an extremal Z4,t = Z4,t∗ can be deduced from [3], thus providing an exemplification of Schur’s problem that seems to be novel. Additionally, we cross-check its validity twice: firstly by deriving Z4,t∗ conversely from a general formula for Z4,t that we have given in [12], and secondly by applying Theorem 5.10 in [11]. We then turn to a generalized solution of Schur’s problem, to k -th derivatives, by Shadrin [16]. Again we provide in explicit form the corresponding maximum as well as an extremizer polynomial for the first non-trivial degree n = 4. Finally, we contribute to the fuller description of Z4,t by providing its critical points in explicit form.

Mathematics Subject Classification (2010): 26C05, 26D10, 41A10, 41A17, 41A29, 41A44, 41A50.

References

Achieser, N.I., Theory of approximation, Dover Publications, Mineola N.Y., 2003 (Russian 1947).

Collins, G.E., Application of quantifier elimination to Solotareff’s approximation problem, in Stability Theory: Hurwitz Centenary Conference, (R. Jeltsch et al., eds.), Ascona 1995, Birkha¨user Verlag, Basel, 1996 (ISNM 121), 181-190.

Erdös, P., Szegö, G., On a problem of I. Schur, Ann. Math., 43(1942), 451-470.

Finch, S.R., Zolotarev-Schur Constant, in Finch, S.R., Mathematical Constants, Cambridge University Press, Cambridge (UK), 2003, 229-231.

Grasegger, G., Vo, N. Th., An algebraic-geometric method for computing Zolotarev polynomials, Technical Report no. 16-02, RISC Report Series, Johannes Kepler University, Linz, Austria, 2016, 1-17.

Lazard, D., Solving Kaltofen’s challenge on Zolotarev’s approximation problem, in Proceedings of International Symposium on Symbolic and Algebraic Computation (ISSAC), (J.-G. Dumas, ed.), Genova 2006, ACM, New York, 2006, 196-203.

Malyshev, V.A., The Abel equation, St. Petersburg Math. J., 13(2002), 893-938 (Russian 2001).

Markov, A.A., On a question of D.I. Mendeleev, Zapiski. Imper. Akad. Nauk., St. Petersburg, 62(1889), 1-24 (Russian).

Markov, V.A., On functions deviating least from zero, Izdat. Akad. Nauk., St. Petersburg, 1892, iv + 111 (Russian).

Milovanovi´c, G.V., Mitrinovi´c, D.S., Rassias, Th.M., Topics in polynomials: Extremal problems, inequalities, zeros, World Scientific, Singapore, 1994.

Peherstorfer, F., Schiefermayr, K., Description of extremal polynomials on several intervals and their computation. II, Acta Math. Hungar., 83(1999), 59-83.

Rack, H.-J., On polynomials with largest coefficient sums, J. Approx. Theory, 56(1989), 348-359.

Rivlin, Th.J., Chebyshev polynomials, 2nd ed., Wiley, New York, 1990.

Schur, I., U¨ber das Maximum des absoluten Betrages eines Polynoms in einem gegebenen Intervall, Math. Z., 4(1919), 271-287.

Shadrin, A., Twelve proofs of the Markov inequality, in Approximation Theory: A volume dedicated to Borislav Bojanov, (D.K. Dimitrov et al., eds.), M. Drinov Acad. Publ. House, Sofia, 2004, 233-298.

Shadrin, A., The Landau-Kolmogorov inequality revisited, Discrete Contin. Dyn. Syst., 34(2014), 1183-1210.

Todd, J., A legacy from E.I. Zolotarev (1847-1878), Math. Intell., 10(1988), 50-53. [18] Vlˇcek, M., Unbehauen, R., Zolotarev polynomials and optimal FIR filters, IEEE Trans.

Signal Process., 47(1999), 717-730. Corrections: IEEE Trans. Signal Process., 48(2000), 2171.

Downloads

Published

2017-06-15

How to Cite

RACK, H.-J. (2017). The first Zolotarev case in the Erdös-Szegö solution to a Markov-type extremal problem of Schur. Studia Universitatis Babeș-Bolyai Mathematica, 62(2), 151–162. https://doi.org/10.24193/subbmath.2017.2.02

Issue

Section

Articles

Similar Articles

<< < 10 11 12 13 14 15 16 17 18 19 > >> 

You may also start an advanced similarity search for this article.