Some new estimates for Fej´er type inequalities in quantum analysis

Authors

  • Kamel BRAHIM Nabeul Preparatory Engineering Institute Mrezgua, 8000 Nabeul, Tunisia, e-mail: Kamel.Brahim@ipeit.rnu.tn https://orcid.org/0000-0002-7113-8651
  • Latifa RIAHI Faculty of Science Mathematic, Physic and Naturelle of Tunis, e-mail: riahilatifa2013@gmail.com
  • Muhammad Uzair AWAN Department of Mathematic Government College University, Faisalabad, e-mail: awan.uzair@gmail.com https://orcid.org/0000-0002-1019-9485

DOI:

https://doi.org/10.24193/subbmath.2017.0005

Keywords:

Convex function, s-convex function, h-convex function, m-convex function, (s, m)-convex function, Riemann-type q-integral, q-Jackson integral.

Abstract

In this paper we derive some new quantum estimates of Fej´er type inequalities which involve Riemann type of quantum integrals via some classes of convex functions. We also discuss some special cases which can be deduced from the main results of this paper.

Mathematics Subject Classification (2010): 26D15, 26A51.

References

Breckner, W.W., Stetigkeitsaussagen fiir eine Klasse verallgemeinerter konvexer funktionen in topologischen linearen Raumen, Publ. Inst. Math., 23(1978), 13-20.

F´ejer, L., U¨ber die Fourierreihen II, (in Hungarian), Math. Naturwiss. Anz Ungar. Akad. Wiss., 24(1906), 369-390.

Dragomir, S.S., Two mappings in connection to Hadamard’s inequalities, J. Math. Anal. Appl., 167(1992), 49-56.

Hudzik, H., Maligranda, L., Some remarks on s-convex functions, Aequationes Math., 48(1994), 100-111.

Jackson, F.H., On a q-definite integrals, Quarterly J. Pure Appl. Math., 41(1910) 193- 203.

Mihe¸san, V.G., A generalizations of the convexity, Seminar on Functional Equations, Approximation and Convexity, Cluj-Napoca, Romania, 1993.

Noor, M.A., Noor, K.I., Awan, M.U., Some Quantum estimates for Hermite-Hadamard inequalities, Appl. Math. Comput., 251(2015), 675-679.

Noor, M.A., Noor, K.I., Awan, M.U., Some quantum integral inequalities via preinvex functions, Appl. Math. Comput., 269(2015), 242-251.

Noor, M.A., Noor, K.I., Awan, M.U., Quantum analogues of Hermite-Hadamard type inequalities for generalized convexity, in: N. Daras and M.T. Rassias (Ed.), Computation, Cryptography and Network Security, 2015.

Rajkovi´c, P.M., Stankovi´c, M.S., Marinkovi´c, S.D., The zeros of polynomials orthogonal with respect to q-integral on several intervals in the complex plane, Proceedings of The Fifth International Conference on Geometry, Integrability and Quantization, 2003, Varna, Bulgaria (ed. I.M. Mladenov, A.C. Hirsshfeld), 178-188.

Taf, S., Brahim, K., Riahi, L., Some results for Hadamard-type inequalities in quantum calculs, Le Matematiche, 69(2014), no. 2, 243-258.

Sarikaya, M.Z., On some new inequalities of Hadamard type involving h-convex functions, Acta Math. Univ. Comenianae, 79(2010), no. 2, 265-272.

Toader, G.H., Some generalisations of the convexity, Proc. Colloq. Approx. Optim, (1984), 329-338.

Tseng, K.L., Hwang, S.R., Dragomir, S.S., On some new inequalities of Hermite- Hadamard-Fej´er type involving convex functions, Demonstratio Math., 40(2007), no. 1, 51-64.

Varoˇsanec, S., On h-convexity, J. Math. Anal. Appl., 326(2007), no. 1, 303-311.

Yang, G.S., Tseng, K.L., A note On Hadamard’s inequality, Tamkang. J. Math., 28(1997) 33-37.

Yang, G.S., Tseng, K.L., On certain integral inequalities related to Hermite-Hadamard inequalites, J. Math. Anal. Appll, 239(1999), 180-187.

Downloads

Published

2017-03-01

How to Cite

BRAHIM, K., RIAHI, L., & AWAN , M. U. (2017). Some new estimates for Fej´er type inequalities in quantum analysis. Studia Universitatis Babeș-Bolyai Mathematica, 62(1), 57–75. https://doi.org/10.24193/subbmath.2017.0005

Issue

Section

Articles

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.