Self adjoint operator harmonic polynomials induced Chebyshev-Grüss inequalities
DOI:
https://doi.org/10.24193/subbmath.2017.0004Keywords:
Self adjoint operator, Hilbert space, Chebyshev- Grüss inequalities, harmonic polynomials.Abstract
We present here very general self adjoint operator harmonic Chebyshev- Grüss inequalities with applications.
Mathematics Subject Classification (2010): 26D10, 26D20, 47A60, 47A67.
References
Anastassiou, G.A., Intelligent Comparisons: Analytic Inequalities, Springer, New York, Heidelberg, 2016.
Anastassiou, G.A., Self Adjoint Operator Chebyshev-Gru¨ss type inequalities, submitted, 2016.
Cˇ ebyˇsev, P.L., Sur les expressions approximatives des int´egrales d´efinies par les autres proses entre les mˆemes limites, Proc. Math. Soc. Charkov, 2(1882), 93-98.
Dedi´c, Lj., Peˇcari´c, J.E., Ujevi´c, N., On generalizations of Ostrowski inequality and some related results, Czechoslovak Mathematical Journal, 53(2003), no. 1, 173-189.
Dragomir, S.S., Inequalities for functions of selfadjoint operators on Hilbert Spaces, ajmaa.org/RGMIA/monographs/InFuncOp.pdf, 2011.
Dragomir, S.S., Operator inequalities of Ostrowski and Trapezoidal type, Springer, New York, 2012.
Fink, A.M., Bounds on the deviation of a function from its averages, Czechoslovak Mathematical Journal, 42(117)(1992), 289-310.
Furuta, T., Mi´ci´c Hot, J., Peˇcaric, J., Seo, Y., Mond-Peˇcaric Method in Operator Inequalities. Inequalities for Bounded Selfadjoint Operators on a Hilbert Space, Element, Zagreb, 2005.
Ghruss, G., Uber das Maximum des absoluten Betrages von , ... Math. Z., 39(1935), 215-226., Math. Z., 39(1935), 215-226.
Helmberg, G., Introduction to Spectral Theory in Hilbert Space, John Wiley & Sons, Inc., New York, 1969.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2017 Studia Universitatis Babeș-Bolyai Mathematica
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.