Existence and Ulam stability for nonlinear implicit fractional differential equations with Hadamard derivative

Authors

  • Mouffak BENCHOHRA Laboratory of Mathematics University of Sidi Bel-Abb`es P.O. Box 89, 22000, Sidi Bel-Abb`es, Algeria, Department of Mathematics; Faculty of Science, King Abdulaziz University P.O. Box 80203, Jeddah 21589, Saudi Arabia, e-mail: benchohra@univ-sba.dz https://orcid.org/0000-0003-3063-9449
  • Jamal E. LAZREG Laboratory of Mathematics University of Sidi Bel-Abb`es P.O. Box 89, 22000, Sidi Bel-Abb`es, Algeria, e-mail: Lazreg_j16@yahoo.fr

DOI:

https://doi.org/10.24193/subbmath.2017.0003

Keywords:

Initial value problem, Hadamard’s fractional derivative, implicit fractional differential equations, fractional integral, existence, Gronwall’s lemma, fixed point, Ulam-Hyers stability, Ulam-Hyers-Rassias stability.

Abstract

The purpose of this paper is to establish some types of Ulam stability: Ulam-Hyers stability, generalized Ulam-Hyers stability, Ulam-Hyers-Rassias stability and generalized Ulam-Hyers-Rassias stability for a class of implicit Hadamard fractional-order differential equation.

Mathematics Subject Classification (2010): 26A33, 34A08.

References

Abbas, S., Benchohra, M., N’Gu´er´ekata, G.M., Topics in Fractional Differential Equations, Springer-Verlag, New York, 2012.

Abbas, S., Benchohra, M., N’Gu´er´ekata, G.M., Advanced Fractional Differential and Integral Equations, Nova Science Publishers, New York, 2015.

Anastassiou, G.A., Advances on Fractional Inequalities, Springer, New York, 2011.

Aoki, T., On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan, 2(1950), 64-66.

Baleanu, D., Diethelm, K., Scalas, E., Trujillo, J.J., Fractional Calculus Models and Numerical Methods, World Scientific Publishing, New York, 2012.

Baleanu, D., Gu¨ven¸c, Z.B., Machado, J.A.T., New Trends in Nanotechnology and Fractional Calculus Applications, Springer, New York, 2010.

Benchohra, M., Bouriah, S., Existence and stability results for nonlinear boundary value problem for implicit differential equations of fractional order, Moroccan J. Pure Appl. Anal., 1(1)(2015), 22-36.

Benchohra, M., Lazreg, J.E., Nonlinear fractional implicit differential equations, Commun. Appl. Anal., 17(2013), 471-482.

Benchohra, M., Lazreg, J.E., Existence and uniqueness results for nonlinear implicit fractional differential equations with boundary conditions, Rom. J. Math. Comput. Sc., 4(1)(2014), 60-72.

Benchohra, M., Lazreg, J.E., On stability for nonlinear implicit fractional differential equations, Matematiche (Catania), 70(2015), 49-61.

Cho, Y.J., Rassias, Th.M., Saadati, R., Stability of Functional Equations in Random Normed Spaces, Springer, New York, 2013.

Gavruta, P., A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl., 184(1994), 431-436.

Hyers, D.H., On the stability of the linear functional equation, Natl. Acad. Sci. U.S.A., 27(1941), 222-224.

Jung, S.M., On the Hyers-Ulam stability of the functional equations that have the quadratic property, J. Math. Anal. Appl., 222(1998), 126-137.

Jung, S.M., Hyers-Ulam stability of linear differential equations of first order, II, Appl. Math. Lett., 19(2006), 854-858.

Jung, S.M., Lee, K.S., Hyers-Ulam stability of first order linear partial differential equations with constant coefficients, Math. Inequal. Appl., 10(2007), 261-266.

Kilbas, A.A., Srivastava, H.M., Trujillo, J.J., Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, 204, Elsevier Science B.V., Amsterdam, 2006.

Lakshmikantham, V., Leela, S., Vasundhara, J., Theory of Fractional Dynamic Systems, Cambridge Academic Publishers, Cambridge, 2009.

Obloza, M., Hyers stability of the linear differential equation, Rocznik Nauk-Dydakt. Prace Mat., 13(1993), 259-270.

Ortigueira, M.D., Fractional Calculus for Scientists and Engineers, Lecture Notes in Electrical Engineering, 84, Springer, Dordrecht, 2011.

Park, C., Rassias, Th.M., Homomorphisms and derivations in proper JCQ∗-triples, J. Math. Anal. Appl., 337(2008), 1404-1414.

Podlubny, I., Fractional Differential Equations, Academic Press, San Diego, 1999.

Rassias, Th.M., On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc., 72(1978), 297-300.

Rassias, Th.M., On a modified Hyers-Ulam sequence, J. Math. Anal. Appl., 158(1991), 106-113.

Rassias, Th.M., Functional Equations, Inequalities and Applications, Kluwer Academic Publishers, Dordrecht 2003.

Rassias, Th.M., Functional Equations, Difference Inequalities and Ulam Stability Notions (F.U.N.), Nova Science Publishers, New York, 2010.

Rassias, Th.M., Brzdek, J., Functional Equations in Mathematical Analysis, Springer, New York, 2012.

Rus, I.A., Ulam stabilities of ordinary differential equations in a Banach space, Carpathian J. Math., 26(2010), 103-107.

Lin, S.-Y., Generalized Gronwall inequalities and their applications to fractional differential equations, J. Inequal. Appl., 2013, 2013:549, 9 pp.

Tarasov, V.E., Fractional Dynamics: Application of Fractional Calculus to Dynamics of particles, Fields and Media, Springer, Heidelberg; Higher Education Press, Beijing, 2010.

Ulam, S.M., Problems in Modern Mathematics, Chapter 6, John Wiley and Sons, New York, USA, 1940.

Ulam, S.M., A Collection of Mathematical Problems, Interscience, New York, 1960. [33] Wang, L., Lv, L., Zhou, Y., Ulam stability and data dependence for fractional differential equations with Caputo derivative, Electron. J. Qual. Theory Differ. Equat., 63(2011), 1-10.

Zhou, Y., Basic Theory of Fractional Differential Equations, World Scientific Publishing, 2014.

Downloads

Published

2017-03-01

How to Cite

BENCHOHRA, M., & LAZREG, J. E. (2017). Existence and Ulam stability for nonlinear implicit fractional differential equations with Hadamard derivative. Studia Universitatis Babeș-Bolyai Mathematica, 62(1), 27–38. https://doi.org/10.24193/subbmath.2017.0003

Issue

Section

Articles

Similar Articles

<< < 1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.