Optimal quadrature formulas for approximate solution of the first kind singular integral equation with Cauchy kernel

Authors

  • Dilshod M. AKHMEDOV V.I. Romanovskiy Institute of Mathematics, Uzbekistan Academy of Sciences, 4b, University str., Tashkent, 100174, Uzbekistan, e-mail: axmedovdilshod@mail.ru
  • Kholmat M. SHADIMETOV Kholmat M. SHADIMETOV Tashkent State Transport University, 1 Odilxojaev str., Tashkent 100167, Uzbekistan, e-mail: kholmatshadimetov@mail.ru

DOI:

https://doi.org/10.24193/subbmath.2022.3.15

Keywords:

Optimal quadrature formulas, the extremal function, Sobolev space, optimal coefficients, Cauchy type singular integral, weight function, singular integral equation.

Abstract

In the present paper in L(m)(1, 1) space the optimal quadrature formulas with derivatives are constructed for approximate solution of a singular integral equation of the first kind with Cauchy kernel. Approximate solution of the singular integral equation is obtained applying the optimal quadrature formulas. Explicit forms of coefficients for the of optimal quadrature formulas are obtained. Some numerical results are presented.

Mathematics Subject Classification (2010): 65D30, 65D32, 65R20.

Received 16 August 2021; Accepted 27 April 2022.

References

Akhmedov, D.M., Optimal quadrature formulas for the Cauchy type singular integral in the Sobolev space L(2)(0, 1), Uzbek Mathematical Journal, 2(2011), 48-56.

Akhmedov, D.M., Optimal quadrature formulas of Hermite type for calculating singular integrals with weight functions, (in Russian), Uzbek Mathematical Journal, 3(2012), 31- 42.

Akhmedov, D.M., Numerical integration of singular integrals of Cauchy type, (in Russian), Uzbek Mathematical Journal, 2(2014), 3-16.

Akhmedov, D.M., Hayotov, A.R., Shadimetov, Kh.M., Optimal quadrature formulas with derivatives for Cauchy type singular integrals, Applied Mathematics and Computation, 317(2018), 150-159.

Belotserkovskii, S.M., Lifanov, I.K., Numerical Methods in Singular Integral Equations, (in Russian), Nauka, Moscow, 1985.

Blaga, P., Coman, Gh., Some problems on optimal quadrature, Stud. Univ. Babe¸s-Bolyai Math., 52(2007), no. 4, 21-44.

C˘atinas, T., Coman, Gh., Optimal quadrature formula based on φ-function method, Stud. Univ. Babe¸s-Bolyai Math., 52(2006), no. 1, 49-64.

Dagninno, C., Santi, E., On the convergance of spline product quadrature formulas for Cauchy principal value integrals, Journal of Computational and Applied Mathematics, 36(1991), 181-187.

Diethelm, K., Gaussian quadrature formulas of the first kind for Cauchy principal value integrals: Basic properties an error estimates, Journal of Computational and Applied Mathematics, 65(1995), 97-114.

Eshkuvatov, Z.K., Modification of quadrature formulas of Belotserkovsky for weight singular integrals, (in Russian), Uzbek Mathematical Journal, 5(1998), 91-100.

Eshkuvatov, Z.K., Nik Long, N.M.A., Abdulkawi, M., Quadrature formula for approximating the singular integral of Cauchy type with unbounded weight function on the edges, Journal of Computational and Applied Mathematics, 233(2009), no. 8, 334-345.

Gakhov, F.D., Boundary problems, (in Russian), Nauka, Moscow, 1977.

Iovane, G.F., Lifanov, I.K., Sumbatyan, M.A., On direct numerical treatment of hyper-singular integral equations arising in mechanics and acoustics, Acta Mech., 162(2003), 99-110.

Isroilov, M.I., Approximate-analytical solution of singular integral equation of first kind using quadrature formula, (in Russian), in: Numerical Integration and Adjacent Problems. Colecction of Articles Academy of Republic of Uzbekistan, Press FAN, Tashkent, (1990), 7-23.

Israilov, M.I., Shadimetov, Kh.M., Weight optimal quadrature formulas for singular integrals of the Cauchy type, Doklady AN RUz, 8(1991), 10-11.

Lifanov, I.K., The method of singular equations and numerical experiments, (in Russian), TOO Yanus, Moscow, 1995.

Lifanov, I.K., Singular Integral Equation and Discrete Vortices, VSP, Utrecht, Netherlands, 1996.

Lifanov, I.K., Polonskii, I.E., Proof of the numerical method of discrete vortices for solving singular integral equations, PMM, 39(1975), no. 4, 742-746.

Muskhelishvili, N.I., Singular Integral Equations, (in Russian), Nauka, Moscow, 1968.

Sard, A., Best approximate integration formulas; best approximation formulas, Amer. J. Math., 71(1949), 80-91.

Shadimetov, Kh.M., Optimal quadrature formulas for singular integrals of the Cauchy type, (in Russian), Doklady AN RUz, 6(1987), 9-11.

Shadimetov, Kh.M., The discrete analogue of the operator and its properties, Voprosy Vichislitelnoy i Prikladnoy Matematiki, Tashkent, 1985, 22-35.

Shadimetov, Kh.M., On an extremal function of quadrature formulas, Doklady AN RUz, 9-10(1995), 3-5.

Shadimetov, Kh.M., Optimal lattice quadrature and cubature formulas in Sobolev spaces, Fan va Texnologiya, Tashkent, (2019), 218.

Shadimetov, Kh.M., Hayotov, A.R., Akhmedov, D.M., Optimal quadrature formulas for the Cauchy type singular integral in the Sobolev space L(2)(−1, 1), American Journal of Numerical Analysis, 1(2013), no. 1, 22-31.

Shadimetov, Kh.M., Hayotov, A.R., Akhmedov, D.M., Optimal quadrature formulas for Cauchy type singular integrals in Sobolev space, Applied Mathematics and Computation, 263(2015), 302-314.

Sobolev, S.L., Introduction to the Theory of Cubature Formulas, (in Russian), Nauka, Moscow, 1974.

Sobolev, S.L., Vaskevich, V.L., The Theory of Cubature Formulas, Kluwer Academic Publishers Group, Dordrecht, 1997.

Downloads

Published

2022-09-20

How to Cite

AKHMEDOV, D. M., & SHADIMETOV, K. M. (2022). Optimal quadrature formulas for approximate solution of the first kind singular integral equation with Cauchy kernel. Studia Universitatis Babeș-Bolyai Mathematica, 67(3), 633–651. https://doi.org/10.24193/subbmath.2022.3.15

Issue

Section

Articles

Similar Articles

<< < 24 25 26 27 28 29 30 31 32 33 > >> 

You may also start an advanced similarity search for this article.