A strong converse inequality for the iterated Boolean sums of the Bernstein operator

Authors

  • Borislav R. DRAGANOV Sofia University ”St. Kl. Ohridski”, Department of Mathematics and Informatics, 5 James Bourchier Blvd., 1164 Sofia, Bulgaria; Bulgarian Academy of Sciences, Institute of Mathematics and Informatics, bl. 8 Acad. G. Bonchev Str., 1113 Sofia, Bulgaria e-mail: bdraganov@fmi.uni-sofia.bg https://orcid.org/0000-0003-4972-378X

DOI:

https://doi.org/10.24193/subbmath.2022.3.10

Keywords:

Bernstein polynomials, Boolean sums, strong converse inequality, mod- ulus of smoothness, K-functional.

Abstract

We establish a two-term strong converse estimate of the rate of approximation by the iterated Boolean sums of the Bernstein operator. The characterization is stated in terms of appropriate moduli of smoothness or K-functionals.

Mathematics Subject Classification (2010): 41A10, 41A17, 41A25, 41A27, 41A35, 41A40.

Received 13 November 2019; Accepted 18 February 2020.

References

Cheng, L., Zhou, X., Strong inequalities for the iterated Boolean sums of Bernstein operators, Stud. Univ. Babe¸s-Bolyai Math., 64(2019), no. 3, 299-304.

DeVore, R.A., Lorentz, G.G., Constructive Approximation, Springer-Verlag, Berlin, 1993.

Ding, C., Cao, F., K-functionals and multivariate Bernstein polynomials, J. Approx. Theory, 155(2008), 125-135.

Ditzian, Z., Ivanov, K.G., Strong converse inequalities, J. Anal. Math., 61(1993), 61-111.

Ditzian, Z., Totik, V., Moduli of Smoothness, Springer-Verlag, New York, 1987.

Draganov, B.R., On simultaneous approximation by iterated Boolean sums of Bernstein operators, Results Math., 66(2014), 21-41.

Draganov, B.R., Strong estimates of the weighted simultaneous approximation by the Bernstein and Kantorovich operators and their iterated Boolean sums, J. Approx. Theory, 200(2015), 92-135.

Draganov, B.R., Gadjev, I., Direct and converse Voronovskaya estimates for the Bernstein operator, Results Math., 73:11(2018).

Gonska, H., Zhou, X.-L., Approximation theorems for the iterated Boolean sums of Bernstein operators, J. Comput. Appl. Math., 53(1994), 21-31.

Knoop, H.-B., Zhou, X.-L., The lower estimate for linear positive operators (II), Results Math., 25(1994), 315-330.

Kopotun, K., Leviatan, D., Shevchuk, I.A., New moduli of smoothness: weighted DT moduli revisited and applied, Constr. Approx., 42(2015), 129-159.

Totik, V., Approximation by Bernstein polynomials, Amer. J. Math., 116(1994), 995-1018.

Downloads

Published

2022-09-20

How to Cite

DRAGANOV, B. R. (2022). A strong converse inequality for the iterated Boolean sums of the Bernstein operator. Studia Universitatis Babeș-Bolyai Mathematica, 67(3), 591–598. https://doi.org/10.24193/subbmath.2022.3.10

Issue

Section

Articles

Similar Articles

<< < 16 17 18 19 20 21 22 23 24 25 > >> 

You may also start an advanced similarity search for this article.