Geometric properties of normalized imaginary error function

Authors

  • Nafya HAMEED MOHAMMED Department of Mathematics, College of Basic Education, University of Raparin, Kurdistan Region, Iraq, e-mail: nafya.mohammad@uor.edu.krd
  • Nak Eun CHO Department of Applied Mathematics, College of Natural Sciences, Pukyong National University, Busan 608-737, Republic of Korea, e-mail: necho@pknu.ac.kr https://orcid.org/0000-0002-5288-6937
  • Ebrahim ANALOUEI ADEGANI Faculty of Mathematical Sciences, Shahrood University of Technology, P.O. Box 316-36155, Shahrood, Iran, e-mail: analoey.ebrahim@gmail.com https://orcid.org/0000-0001-9176-3932
  • Teodor BULBOACĂ Faculty of Mathematics and Computer Science, Babe¸s-Bolyai University, 400084 Cluj-Napoca, Romania, e-mail: bulboaca@math.ubbcluj.ro https://orcid.org/0000-0001-8026-218X

DOI:

https://doi.org/10.24193/subbmath.2022.2.19

Keywords:

Univalent function, close-to-convex, error function, imaginary error function.

Abstract

The error function takes place in a wide range in the fields of mathematics, mathematical physics and natural sciences. The aim of the current paper is to investigate certain properties such as univalence and close-to-convexity of normalized imaginary error function, which its region is symmetric with respect to the real axis. Some other outcomes are also obtained.

Mathematics Subject Classification (2010): 30C45, 30C50, 33B20.

Received 27 August 2021; Accepted 27 August 2021.

References

Abramowitz, M., Stegun, I.A., Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Dover Publications Inc., New York, 1965.

Adegani, E.A., Bulboaca, T., New properties of the generalized Dini function, Hacet. J. Math. Stat., 49(2020), no. 5, 1753-1760.

Alzer, H., Error function inequalities, Adv. Comput. Math., 33(2010), no. 3, 349-379.

Aouf, M.K., Mostafa, A.O., Zayed, H.M., Sufficiency conditions for hypergeometric functions to be in a subclasses of analytic functions, Kyungpook Math. J., 56(2016), 235-248.

Aouf, M.K., Mostafa, A.O., Zayed, H.M., Necessity and sufficiency for hypergeometric functions to be in a subclass of analytic functions, J. Egyptian Math. Soc., 23(2015), 476-481.

Bansal, D., Sokol, J., Geometric properties of Mathieu-type power series inside unit disk, J. Math. Inequal., 13(2019), no. 4, 911-918.

Bansal, D., Soni, M.K., Soni, A., Certain geometric properties of the modified Dini function, Anal. Math. Phys., 9(2019), 1383-1392.

Baricz, A., Deniz, E., Yagmur, N., Close-to-convexity of normalized Dini functions, Math. Nachr., 289(2016), 1721-1726.

Baricz, A., Toklu, E., Kadioglu, E., Radii of starlikeness and convexity of Wright functions, Math. Commun., 23(2018), no. 1, 97-117.

Chaudhry, M.A., Qadir, A., Zubair, S.M., Generalized error functions with applications to probability and heat conduction, Int. J. Appl. Math., 9(2002), 259-278.

Coman, D., The radius of starlikeness for the error function, Stud. Univ. Babes-Bolyai Math., 36(1991), no. 2, 13-16.

Elbert, A., Laforgia, A., The zeros of the complementary error function, Numer. Algorithms, 49(2008), 153-157.

Fej´er, L., Untersuchungen u¨ber Potenzreihen mit mehrfach monotoner Koeffizientenfolge, Acta Literarum Sci., 8(1936), 89-115.

Fettis, H.E., Caslin, J.C., Cramer, K.R., Complex zeros of the error function and of the complementary error function, Math. Comp., 27(1973), 401-407.

Herden, G., The role of error-functions in order to obtain relatively optimal classification, In: Classification and Related Methods of Data Analysis (Aachen, 1987), North-Holland, Amsterdam, 1988, 105-111.

Noreen, S., Raza, M., Liu, J.L., Arif, M., Geometric properties of normalized Mittag-Leffler functions, Symmetry, 11(2019), no. 1, Article ID 45, 1-13.

Ozaki, S., On the theory of multivalent functions, Sci. Rep. Tokyo Bunrika Daigaku A, 2(1935), 167-188.

Prajapat, J.K., Certain geometric properties of the Wright functions, Integral Transforms Spec. Funct., 26(2015), no. 3, 203-212.

Raducanu, D., Geometric properties of Mittag-Leffler functions, In: Models and Theories in Social Systems, Springer, Berlin, Germany, 2019, 403-415.

Ramachandran, C., Vanitha, L., Kanas, S., Certain results on q-starlike and q-convex error functions, Math. Slovaca, 68(2018), no. 2, 361-368.

Ruscheweyh, St., Convolutions in Geometric Function Theory, Presses Univ. Montr´eal, Montreal, 1982.

Sahoo, S.K., Sharma, N.L., On a generalization of close-to-convex functions, Ann. Polon. Math., 113(2015), no. 1, 93-108.

Downloads

Published

2022-06-10

How to Cite

HAMEED MOHAMMED, N., CHO, N. E., ANALOUEI ADEGANI, E., & BULBOACĂ, T. (2022). Geometric properties of normalized imaginary error function. Studia Universitatis Babeș-Bolyai Mathematica, 67(2), 455–462. https://doi.org/10.24193/subbmath.2022.2.19

Issue

Section

Articles

Similar Articles

<< < 17 18 19 20 21 22 23 24 25 > >> 

You may also start an advanced similarity search for this article.