The Fekete–Szegö problem for spirallike mappings and non-linear resolvents in Banach spaces

Authors

  • Mark ELIN Department of Mathematics, Ort Braude College, Karmiel 21982, Israel, e-mail: mark elin@braude.ac.il
  • Fiana JACOBZON Department of Mathematics, Ort Braude College, Karmiel 21982, Israel, e-mail: fiana@braude.ac.il https://orcid.org/0000-0002-0348-6451

DOI:

https://doi.org/10.24193/subbmath.2022.2.09

Keywords:

Fekete–Szegö inequality, holomorphically accretive mapping, spirallike mapping, non-linear resolvent.

Abstract

We study the Fekete–Szegö problem on the open unit ball of a complex Banach space. Namely, the Fekete–Szegö inequalities are proved for the class of spirallike mappings relative to an arbitrary strongly accretive operator, and some of its subclasses. Next, we consider families of non-linear resolvents for holomorphically accretive mappings vanishing at the origin. We solve the Fekete– Szegö problem over these families.

Mathematics Subject Classification (2010): 32H02, 30C45.

Received 2 February 2022; Accepted 9 March 2022.

References

Bracci, F., Contreras, M.D., D´ıaz-Madrigal, S., Regular poles and β-numbers in the theory of holomorphic semigroups, Constr. Approx., 37(2013), 357-381.

Chirila, T., Subclasses of biholomorphic mappings associated with g-Loewner chains on the unit ball in Cn, Complex Var. Elliptic Equ., 59(2014), 1456-1474.

Curt, P., Kohr, G., Kohr, M., Homeomorphic extension of strongly spirallike mappings in Cn, Sci. China Math., 53(2010), 87-100.

Dlugosz, R., Liczberski, P., Some results of Fekete-Szeg¨o type for Bavrin’s families of holomorphic functions in Cn, Ann. Mat. Pura Appl., 200(2021), 1841-1857.

Duren, P.L., Univalent Functions, Springer-Verlag, New York, Berlin, Heidelberg, Tokyo, 1983.

Elin, M., Jacobzon, F., Estimates on some functionals over non-linear resolvents, available at arXiv: https://arxiv.org/pdf/2105.09582.pdf.

Elin, M., Jacobzon, F., Note on the Fekete-Szeg¨o problem for spirallike mappings in Banach spaces, Results Math. (2022) available at: https://doi.org/10.1007/s00025-022- 01672-x

Elin, M., Reich, S., Shoikhet, D., Complex dynamical systems and the geometry of do- mains in Banach spaces, Dissertationes Math. (Rozprawy Mat.), 427(2004), 62 pp.

Elin, M., Reich, S., Shoikhet, D., Numerical Range of Holomorphic Mappings and Applications, Birkha¨user, Cham, 2019.

Elin, M., Shoikhet, D., Semigroups with boundary fixed points on the unit Hilbert ball and spirallike mappings, In: Geom Funct. Theory Several Complex Var., World Sci. Publishing, River Edge, NJ., 2004, 82-117.

Elin, M., Shoikhet, D., Tarkhanov, N., Analytic semigroups of holomorphic mappings and composition operators, Comput. Methods Funct. Theory, 18(2018), 269-294.

Fekete, M., Szego, G., Eine Bemerkung uber ungerade schlichte Funktionen, J. Lond. Math. Soc., 8(1933), 85-89.

Graham, I., Hamada, H., Kohr, G., Loewner chains and nonlinear resolvents of the Carath´eodory family on the unit ball in Cn, J. Math. Anal. Appl., 491(2020), https://doi.org/10.1016/j.jmaa.2020.124289.

Graham, I., Hamada, H., Kohr, G., Kohr, M., Loewner chains and extremal problems for mappings with A-parametric representation in Cn, In: Geometric function theory in higher dimension, 165-182, Springer INdAM Ser., 26, Springer, Cham, 2017.

Graham, I., Kohr, G., Geometric Function Theory in One and Higher Dimensions, Marcel Dekker, New York, 2003.

Hamada, H., Iancu, M., Kohr, G., A survey on Lœwner chains, approximation results, and related problemsfor univalent mappings on the unit ball in Cn, Rev. Roumaine Math. Pures Appl., 66(2021), 709-723.

Hamada, H., Kohr, G., Subordination chains and the growth theorem of spirallike mappings, Mathematica (Cluj), 42(65)(2000), 153-161.

Hamada, H., Kohr, G., The growth theorem and quasiconformal extension of strongly spirallike mappings of type α, Complex Var. Elliptic Equ., 44(2001), 281-297.

Hamada, H., Kohr, G., Kohr, M., The Fekete-Szeg¨o problem for starlike mappings and nonlinear resolvents of the Carath´eodory family on the unit balls of complex Banach spaces, Anal. Math. Phys., 11(2021), https://doi.org/10.1007/s13324-021-00557-6.

Harris, L.A., The numerical range of holomorphic functions in Banach spaces, Amer. J. Math., 93(1971), 1005-1019.

Keogh, F.R., Merkes, E.P., A coefficient inequality for certain classes of analytic functions, Proc. Amer. Math. Soc., 20(1969), 8-12.

Lai, Y., Xu, Q., On the coeffcient inequalities for a class of holomorphic mappings associated with spirallike mappings in several complex variables, Results Math. 76(2021), https://doi.org/10.1007/s00025-021-01500-8.

Liczberski, P., On the subordination of holomorphic mappings in Cn, Demonstr. Math.,XIX(1986), 293-301.

Reich, S., Shoikhet, D., Nonlinear Semigroups, Fixed Points, and the Geometry of Domains in Banach Spaces, World Scientific Publisher, Imperial College Press, London, 2005.

Rudin, W., Functional Analysis, Int. Ser. in Pure and Appl. Math., NY: McGraw-Hill, 8(1991).

Suffridge, T.J., Starlikeness, convexity and other geometric properties of holomorphic maps in higher dimensions, Complex Analysis (Proc. Conf. Univ. Kentucky, Lexington, KY, 1976), Lecture Notes in Math., 599(1977), 146-159.

Xu, Q.H., Liu, T.S., The study for estimation of homogeneous expansion of subclasses of biholomorphic mappings by a unifed method, Acta Math. Sinica (Chinese Ser.), 52(2009), 1189-1198.

Downloads

Published

2022-06-10

How to Cite

ELIN, M., & JACOBZON, F. (2022). The Fekete–Szegö problem for spirallike mappings and non-linear resolvents in Banach spaces. Studia Universitatis Babeș-Bolyai Mathematica, 67(2), 329–344. https://doi.org/10.24193/subbmath.2022.2.09

Issue

Section

Articles

Similar Articles

<< < 8 9 10 11 12 13 14 15 16 17 > >> 

You may also start an advanced similarity search for this article.