The Nehari–Schwarz lemma and infinitesimal boundary rigidity of bounded holomorphic functions
DOI:
https://doi.org/10.24193/subbmath.2022.2.05Keywords:
Schwarz’ lemma, Blaschke products, Bergman spaces.Abstract
We survey a number of recent generalizations and sharpenings of Nehari’s extension of Schwarz’ lemma for holomorphic self–maps of the unit disk. In particular, we discuss the case of infinitely many critical points and its relation to the zero sets and invariant subspaces for Bergman spaces, as well as the case of equality at the boundary.
Mathematics Subject Classification (2010): 30C80, 32A36.
Received 9 January 2022; Accepted 9 March 2022.
References
Ahlfors, L.V., An extension of Schwarz’s lemma, Trans. Am. Math. Soc., 43(1938), 359- 364.
Baracco, L., Zaitsev, D., Zampieri, G., A Burns-Krantz type theorem for domains with corners, Math. Ann., 336(2006), no. 3, 491-504.
Beardon, A.F., The Schwarz-Pick Lemma for derivatives, Proc. Am. Math. Soc., 125(1997), no. 11, 3255-3256.
Beardon, A.F., Minda, D., A multi-point Schwarz-Pick lemma, J. Anal. Math., 92(2004), 81-104.
Beardon, A.F., Minda, D., The hyperbolic metric and geometric function theory, In: Proceedings of the International Workshop on Quasiconformal Mappings and Their Applications, December 27, 2005-January 1, 2006, 9-56, New Delhi, Narosa Publishing House, 2007.
Bergweiler, W., A new proof of the Ahlfors five islands theorem, J. Anal. Math., 76(1998), 337-347.
Bolotnikov, V., A uniqueness result on boundary interpolation, Proc. Am. Math. Soc., 136(2008), no. 5, 1705-1715.
Bousch, T., Sur quelques probl`emes de dynamique holomorphe, Ph.D. thesis, Universite Paris 11, Orsay, 1992.
Bracci, F., Kraus, D., Roth, O., A new Schwarz-Pick lemma at the boundary and rigidity of holomorphic maps, arXiv:2003.02019.
Burns, D.M., Krantz, S., Rigidity of holomorphic mappings and a new Schwarz lemma at the boundary, J. Am. Math. Soc., 7(1994), no. 3, 661-676.
Chelst, D., A generalized Schwarz lemma at the boundary, Proc. Am. Math. Soc., 129(2001), no. 11, 3275-3278.
Chen, H., On the Bloch Constant, In: Arakelian, N. (ed.) et al., Approximation, Complex Analysis, and Potential Theory, Kluwer Academic Publishers, 2001, 129-161.
Dubinin, V.N., The Schwarz inequality on the boundary for functions regular in the disk, J. Math. Sci., 122(2004), no. 6, 3623-3629.
Duren, P., Schuster, A., Bergman Spaces, Amer. Math. Soc., 2004.
Dyakonov, K.M., A characterization of M¨obius transformations, C.R. Math. Acad. Sci. Paris, 352(2014), no. 2, 593-595.
Dyakonov, K.M., Inner functions and inner factors of their derivatives, Integr. Equ. Oper. Theory, 82(2015), no. 2, 151-155.
Elin, M., Jacobzon, F., Levenshtein, M., Shoikhet, D., The Schwarz lemma: rigidity and dynamics, In: A. Vasil’ev, Harmonic and Complex Analysis and its Applications, Springer, 2014, 135-230.
Frostman, O., Sur les produits de Blaschke, Fysiogr. S¨allsk. Lund F¨orh, 12(1942), no. 15, 169-182.
Garcia, S.R., Mashreghi, J., Ross, W.T., Finite Blaschke Products and Their Connections, Springer, 2018.
Golusin, G.M., Some estimations of derivatives of bounded functions, (Russian. English Summary), Rec. Math. [Mat. Sbornik] N.S., 16(58)(1945), 295-306.
Golusin, G.M., Geometric Theory of Functions of One Complex Variable, AMS, 1969. [22] Graham, I., Minda, D., A Schwarz lemma for multivalued functions and distortion theorems for Bloch functions with branch points, Trans. Amer. Math. Soc., 351(1999), no. 12, 4741-4752.
Hedenmalm, H., Korenblum, B., Zhu, K., Theory of Bergman Spaces, Springer, 2000.
Heins, M., On a class of conformal metrics, Nagoya Math. J., 21(1962), 1-60.
Heins, M., Some characterizations of finite Blaschke products of positive degree, J. Anal. Math., 46(1986), 162-166.
Ivrii, O., Prescribing inner parts of derivatives of inner functions, J. Anal. Math., 139(2019), no. 2, 495–519.
Ivrii, O., Critical structures of inner functions, J. Funct. Anal., 281(2021), no. 8, Paper No. 109138, 14 pp.
Kraus, D., Critical sets of bounded analytic functions, zero sets of Bergman spaces and nonpositive curvature, Proc. London Math. Soc., 106(2013), no. 3, 931-956.
Kraus, D., Roth, O., Critical points of inner functions, nonlinear partial differential equations, and an extension of Liouville’s theorem, J. Lond. Math. Soc., 77(2008), no. 1, 183-202.
Kraus, D., Roth, O., The behaviour of solutions of the Gaussian curvature equation near an isolated boundary point, Math. Proc. Cambridge Philos. Soc., 145(2008), no. 3, 643-667.
Kraus, D., Roth, O., Critical points, the Gauss curvature equation and Blaschke products, Fields Institute Comm., 65(2012), 133-157.
Kraus, D., Roth, O., Maximal Blaschke products, Adv. Math., 241(2013), 58-78.
Kraus, D., Roth, O., Ruscheweyh, St., A boundary version of Ahlfors’ Lemma, locally complete conformal metrics and conformally invariant reflection principles for analytic maps, J. Anal. Math., 101(2007), 219-256.
Liu, X., Minda, D., Distortion theorems for Bloch functions, Trans. Amer. Math. Soc., 333(1992), no. 1, 325-338.
Minda, D., Lower bounds for the hyperbolic metric in convex regions, Rocky Mountain J. Math., 13(1983), no. 1, 61-69.
Minda, D., The strong form of Ahlfors’ lemma, Rocky Mt. J. Math., 17(1987), 457-461.
Nehari, Z., A generalization of Schwarz’ lemma, Duke Math. J., 14(1947), 1035-1049. [38] Nikol’skii, N.K., Treatise on the Shift Operator, Springer 1986.
Osserman, R., A sharp Schwarz inequality on the boundary, Proc. Am. Math. Soc., 128(2000), no. 12, 3513-3517.
Royden, H., The Ahlfors-Schwarz lemma: The case of equality, J. Anal. Math., 46(1986), 261-270.
Semmler, G., Wegert, E., Finite Blaschke products with prescribed critical points, Stieltjes polynomials, and moment problems, Anal. Math. Phys., 9(2019), no. 1, 221-249.
Shapiro, J.H., Composition Operators and Classical Function Theory, New York, Springer-Verlag, 1993.
Shimorin, S.M., Approximate spectral synthesis in the Bergman space, Duke Math. J., 101(2000), no. 1, 1-39.
Shoikhet, D., Another look at the Burns-Krantz theorem, J. Anal. Math., 105(2000), 19-42.
Stephenson, K., Introduction to Circle Packing: The Theory of Discrete Analytic Functions, Cambridge Univ. Press, 2005.
Tauraso, R., Vlacci, F., Rigidity at the boundary for holomorphic self-maps of the unit disk, Complex Variables, Theory Appl., 45(2001), no. 2, 151-165.
Walsh, J., The Location of Critical Points of Analytic and Harmonic Functions, Am. Math. Soc., 1950.
Wang, Q., Peng, J., On critical points of finite Blaschke products and the equation ∆u = e2u, (Chinese), Kexue Tongbao, 24(1979), 583-586.
Wegert, E., Seeing the monodromy group of a Blaschke product, Notices Amer. Math. Soc., 67(2020), no. 7, 965-975.
Yamada, A., Bounded analytic functions and metrics of constant curvature on Riemann surfaces, Kodai Math. J., 11(1988), no. 3, 317-324.
Yamashita, S., The Pick version of the Schwarz lemma and comparison of the Poincar´e densities, Ann. Acad. Sci. Fenn., Ser. A I, Math., 19(1994), no. 2, 291-322.
Yamashita, S., Goluzin’s extension of the Schwarz-Pick inequality, J. Inequal. Appl., 1(1997), no. 4, 345-356.
Zakeri, S., On critical points of proper holomorphic maps on the unit disk, Bull. London Math. Soc., 30(1996), no. 1, 62-66.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Studia Universitatis Babeș-Bolyai Mathematica
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.