Group graded Morita equivalences for wreath products

Authors

  • Virgilius-Aurelian MINUȚĂ Technical University of Cluj-Napoca, Faculty of Automation and Computer Science, Department of Mathematics, 25, G. Bari¸tiu Street, 400027, Cluj-Napoca, Romania Babe¸s-Bolyai University, Faculty of Mathematics and Computer Science, Department of Mathematics, 1, M. Kog˘alniceanu Street, 400084, Cluj-Napoca, Romania, e-mail: minuta.aurelian@math.ubbcluj.ro https://orcid.org/0000-0001-7190-7337

DOI:

https://doi.org/10.24193/subbmath.2021.3.01

Keywords:

Group graded algebras, wreath products, Morita equivalences, crossed products, centralizer subalgebra.

Abstract

Starting with group graded Morita equivalences, we obtain Morita equivalences for tensor products and wreath products.

Mathematics Subject Classification (2010): 16W50, 20E22, 20C05, 20C20, 16D90, 16S35.

References

Marcus, A., Representation Theory of Group-Graded Algebras, Nova Science Publ. Inc., 1999.

Marcus, A., Minuta, V.A., Group graded endomorphism algebras and Morita equivalences, Mathematica, 62(85)(2020), no. 1, 73-80.

Marcus, A., Minuta, V.A., Character triples and equivalences over a group graded G-algebra, J. Algebra, 565(2021), 98-127.

Minuta, V.A., Graded Morita theory over a G-graded G-acted algebra, Acta Univ. Sapientiae Math., 12(2020), no. 1, 164-178.

Spath, B., A reduction theorem for Dade’s projective conjecture, J. Eur. Math. Soc. (JEMS), 19(2017), no. 4, 1071-1126.

Spa¨th, B., Inductive Conditions for Counting Conjectures via Character Triples, in Representation Theory - Current Trends and Perspectives, (H. Krause, P. Littelmann, G. Malle, K.H. Neeb, C. Schweigert, Eds.), EMS Ser. Congr. Rep., Zu¨rich, 2017, 665-680.

Spa¨th, B., Reduction theorems for some global-local conjectures, in Local Representation Theory and Simple Groups, (R. Kessar, G. Malle, D. Testerman, Eds.), EMS Ser. Lect. Math., Zu¨rich, 2018, 23-61.

Downloads

Published

2021-09-30

How to Cite

MINUȚĂ, V.-A. (2021). Group graded Morita equivalences for wreath products. Studia Universitatis Babeș-Bolyai Mathematica, 66(3), 411–422. https://doi.org/10.24193/subbmath.2021.3.01

Issue

Section

Articles

Similar Articles

1 2 3 > >> 

You may also start an advanced similarity search for this article.