Some applications of Maia's fixed point theorem for Fredholm integral equation systems

Authors

  • Alexandru-Darius FILIP Babe¸s-Bolyai University, Faculty of Economics and Business Administration, Department of Statistics-Forecasts-Mathematics, Teodor Mihali Street, No. 58-60, 400591 Cluj-Napoca, Romania, e-mail: darius.filip@econ.ubbcluj.ro

DOI:

https://doi.org/10.24193/subbmath.2022.1.14

Keywords:

Space of continuous functions, vector-valued metric, matrix convergent to zero, A-contraction, fixed point, Picard operator, weakly Picard operator, integral equation, Fredholm integral equation system, vectorial Maia’s fixed point theorem, abstract Gronwall lemma, abstract comparison lemma.

Abstract

The aim of this paper is to study the existence and uniqueness of solutions for some Fredholm integral equation systems by applying the vectorial form of Maia’s fixed point theorem. Some abstract Gronwall lemmas and an abstract comparison lemma are also obtained.

Mathematics Subject Classification (2010): 47H10, 47H09, 34K05, 34K12, 45D05, 45G10, 54H25.

Received 20 October 2019; Revised 28 February 2020; Accepted 08 May 2020.

References

Allaire, G., Kaber, S.M., Numerical Linear Algebra, Springer, New York, NY, USA, 2008.

Balazs, M.-E., Maia type fixed point theorems for Presic type operators, Fixed Point Theory, 20(2019), no. 1, 59-70.

Berinde, V., Iterative Approximation of Fixed Points, Lecture Notes in Mathematics, Springer-Verlag Berlin Heidelberg, 2007.

Frechet, M., Les Espaces Abstraits, Gauthier-Villars, Paris, 1928.

Maia, M.G., Un’osservatione sulle contrazioni metriche, Rend. Semin. Mat. Univ. Padova, 40(1968), 139-143.

Perov, A.I., On the Cauchy problem for a system of ordinary differential equations, Pviblizhen. Met. Reshen. Differ. Uravn, 2(1964), 115-134.

Perov, A.I., Kibenko, A.V., On a certain general method for investigation of boundary value problems, (Russian), Izvestiya Akademii Nauk SSSR, Seriya Matematicheskaya, 30(1966), 249-264.

Petrusel, A., Rus, I.A., Fixed point theory in terms of a metric and of an order relation, Fixed Point Theory, 20(2019), no. 2, 601-622.

Rus, I.A., On a fixed point theorem of Maia, Stud. Univ. Babes-Bolyai Math., 22(1977), 40-42.

Rus, I.A., Basic problem for Maia’s theorem, Sem. on Fixed Point Theory, Preprint 3(1981), Babes-Bolyai Univ. Cluj-Napoca, 112-115.

Rus, I.A., Generalized Contractions and Applications, Cluj Univ. Press, Cluj-Napoca, 2001.

Rus, I.A., Picard operators and applications, Sci. Math. Jpn., 58(2003), no. 1, 191-219.

Rus, I.A., Fixed points, upper and lower fixed points: abstract Gronwall lemmas, Carpathian J. Math., 20(2004), no. 1, 125-134.

Rus, I.A., Data dependence of the fixed points in a set with two metrics, Fixed Point Theory, 8(2007), no. 1, 115-123.

Rus, I.A., Some nonlinear functional differential and integral equations, via weakly Pi-card operator theory: a survey, Carpathian J. Math., 26(2010), no. 2, 230-258.

Rus, I.A., Some problems in the fixed point theory, Adv. Theory of Nonlinear Analysis Appl., 2(2018), no. 1, 1-10.

Rus, I.A., Petru¸sel, A., Petru¸sel, G., Fixed Point Theory, Cluj Univ. Press, Cluj-Napoca, 2008.

Rus, I.A., S¸erban, M.A., Basic problems of the metric fixed point theory and the relevance of a metric fixed point theorem, Carpathian J. Math., 29(2013), no. 2, 239-258.

Varga, R.S., Matrix Iterative Analysis, vol. 27 of ”Springer Series in Computational Mathematics”, Springer, Berlin, Germany, 2000.

Downloads

Published

2022-03-10

How to Cite

FILIP, A.-D. (2022). Some applications of Maia’s fixed point theorem for Fredholm integral equation systems. Studia Universitatis Babeș-Bolyai Mathematica, 67(1), 189–202. https://doi.org/10.24193/subbmath.2022.1.14

Issue

Section

Articles

Similar Articles

<< < 25 26 27 28 29 30 31 32 33 34 > >> 

You may also start an advanced similarity search for this article.