A weighted logarithmic barrier interior-point method for linearly constrained optimization
DOI:
https://doi.org/10.24193/subbmath.2021.4.14Keywords:
Logarithmic barrier method, linearly constrained convex optimization, interior-point methods.Abstract
In this paper, a weighted logarithmic barrier interior-point method for solving the linearly convex constrained optimization problems is presented. Unlike the classical central-path, the barrier parameter associated with the perturbed barrier problems, is not a scalar but is a weighted positive vector. This modification gives a theoretical flexibility on its convergence and its numerical performance. In addition, this method is of a Newton descent direction and the computation of the step-size along this direction is based on a new efficient technique called the tangent method. The practical efficiency of our approach is shown by giving some numerical results.
Mathematics Subject Classification (2010): 90C30, 90C25, 90C51.
References
Achache, M., A weighted-path-following method for the linear complementarity problem, Stud. Univ. Babes-Bolyai Informatica, 49(2004), no. 1, 61-73.
Achache, M., A polynomial-time weighted path-following interior-point algorithm for linear optimization, Asian-Eur. J. Math., 13(2020), no. 1, 1-9.
Achache, M., Khebchache, R., A full-Newton step fessible weighted primal-dual interior point algorithm for monotone LCP, Afr. Mat., 27(2016), no. 3, 591-601.
Achache, M., Khebchache, R., A full-Newton step feasible weighted primal-dual interior point algorithm for monotone LCP, Afr. Mat., 27(2016), no. 3, 591-601.
Alzalg, B., A logarithmic barrier interior-point method based on majorant functions for second-order cone programming, Department of Mathematics, The University of Jordan, Amman 11942, Jordan, (2017).
Bachir Cherif, B., Merikhi, B., A penalty method for nonlinear programming, RAIRO Oper. Res., 53(2019), no. 1, 29-38.
Crouzeix, J.-P., Seeger, A., New bounds for the extreme values of a finite sample of real numbers, J. Math. Anal. Appl., 197(1996), 411-426.
Crouzeix, J.-P., Merikhi, B., A logarithm barrier method for semi-definite programming, RAIRO Oper. Res., 42(2008), no. 2, 123-139.
Darvay, Zs., A weighted-path-following method for linear optimization, Stud. Univ. Babes-Bolyai Informatica, 47(2002), no. 1, 3-12.
Goutali, M., Complexite et implimentation numerique d’une methode de points interieurs pour la programmation convexe, Memoire de Doctorat, Dept. Math. Univ. Setif, 2018.
Kebbiche, Z., Benterki, D., A weighted-path-following method for linearly constrained convex programming, Rev. Roumaine Math. Pures Appl., 57(2012), no. 3, 245-256.
Kettab, S., Benterki, D., A relaxed logarithmic barrier method for semidefinite programming, RAIRO Oper. Res., 49(2015), 555-568.
Menniche, L., Benterki, D., Alogarithmic barrier approach for linear programming, J. Comput. Appl. Math., 312(2017), 267-275.
Zhang, M., Bai, Y., Wang, G., A new primal-dual path-following interior-point algorithm for linearly constrained convex optimization, J. Shanghai Univ., 12(2008), no. 6, 475-480.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Studia Universitatis Babeș-Bolyai Mathematica
![Creative Commons License](http://i.creativecommons.org/l/by-nc-nd/4.0/88x31.png)
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.