A dynamic electroviscoelastic problem with thermal effects
DOI:
https://doi.org/10.24193/subbmath.2021.4.13Keywords:
Piezoelectric, frictional contact, thermo-elasto-viscoplastic, fixed point, dynamic process, Coulomb’s friction law, evolution inequality.Abstract
We consider a mathematical model which describes the dynamic process of contact between a piezoelectric body and an electrically conductive foundation. We model the material’s behavior with a nonlinear electro-viscoelastic constitutive law with thermal effects. Contact is described with the Signorini condition, a version of Coulomb’s law of dry friction. A variational formulation of the model is derived, and the existence of a unique weak solution is proved. The proofs are based on the classical result of nonlinear first order evolution inequalities, the equations with monotone operators, and the fixed point arguments.
Mathematics Subject Classification (2010): 74M15, 74M10, 74F05, 49J40.
References
Adly, S., Chau, O., On some dynamic thermal non clamped contact problems, Math. Programm., Ser. B, (2013), no. 139, 5-26.
Barboteu, M., Fernandez, J.R., Ouafik, Y., Numerical analysis of a frictionless viscoelastic piezoelectric contact problem, M2AN Math. Model. Numer. Anal., (in press).
Barbu, V., Optimal Control of Variational Inequalities, Pitman, Boston, 1984.
Batra, R.C., Yang, J.S., Saint Venant’s principle in linear piezoelectricity, Journal of Elasticity, 38(1995), 209-218.
Brezis, H., Analyse Fonctionnelle, Theorie et Application, Masson, Paris, 1987.
Chau, O., On a class of second order evolution inequality and application, Int. J. of Appl. Math. and Mech., 4(2008), no. 1, 24-48.
Drabla, S., Zellagui, Z., Analysis of a electro-elastic contact problem with friction and adhesion, Stud. Univ. Babes-Bolyai Math., 54(2009), 75-99.
Duvaut G., Lions, J.L., Inequalities in Mechanics and Physics, Springer-Verlag, Berlin, 1988.
Han, W., Sofonea, M., Kazmi, K., Analysis and numerical solution of a frictionless contact problem for electro-elastic-visco-plastic materials, Comput. Methods Appl. Mech. Engrg., 196(2007), 3915-3926.
Jarusek, J., Sofonea, M. On the solvability of dynamic elastic-visco-plastic contact problems, Z. Angew. Math. Mech., 88(2008), 3-22.
Mindlin, R.D., Polarisation gradient in elastic dielectrics, Int. J. Solids Structures, 4(1968), 637-663.
Mindlin, R.D., Continuum and lattice theories of influence of electromechanical coupling on capacitance of thin dielectric films, Int. J. Solids, 4(1969), 1197-1213.
Mindlin, R.D., Elasticity, Piezoelectricity and Cristal lattice dynamics, J. of Elasticity, 4 (1972), 217-280.
Rochdi, M., Shillor, M., Sofonea, M., A quasistatic contact problem with directional friction and damped response, Appl. Anal., 68(1998), 409-422.
Selmani, L., Bensebaa, N., An electro-viscoelastic contact problem with adhesion and damage, Rend. Semin. Mat. Univ. Politec. Torino, 66(2008), no. 2.
Selmani, M., Selmani, L., Frictional contact problem for elastic-viscoplastic materials with thermal effect, Appl. Math. Mech. (English Ed.), 34(2013), no. 6, 761-776.
Sofonea, M., Essoufi, E.-H., Quasistatic frictional contact of a viscoelastic piezoelectric body, Adv. Math. Sci. Appl., 14(2004), no. 1, 25-40.
Touzaline, A., A viscoelastic frictionless contact problem with adhesion, Boll. Pol. Acad. Sci. Math., 63(2015), 53-66.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Studia Universitatis Babeș-Bolyai Mathematica
![Creative Commons License](http://i.creativecommons.org/l/by-nc-nd/4.0/88x31.png)
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.