Baskakov-Kantorovich operators reproducing affine functions
DOI:
https://doi.org/10.24193/subbmath.2021.4.11Keywords:
Baskakov-Kantorovich operators, polynomial weighted spaces, rate of convergence.Abstract
We present a new Kantorovich modification of Baskakov operators which reproduce affine functions. We present an upper estimate for the rate of convergence of the new operators in polynomial weighted spaces and characterize all functions for which there is convergence in the weighted norm.
Mathematics Subject Classification (2010): 41A35, 41A36.
References
Agratini, O., Kantorovich-type operators preserving affine functions, Hacet. J. Math. Stat., 45(6)(2016), 1657-1663.
Bustamante, J., Carrillo-Zentella, A., Quesada, J.M., Direct and strong converse theorems for a general sequence of positive linear operators, Acta Math. Hungar., 136(2012), no. 1-2, 90-106.
Ditzian, Z., Totik, V., Moduli of Smoothness, Springer, New York, 1987.
Feng, G., Direct and inverse approximation theorems for Baskakov operators with the Jacobi-type weight, Abstr. Appl. Anal., (2011), Art. ID 101852, 13 pages.
Holhos, A., Uniform weighted approximation by positive linear operators, Stud. Univ. Babes-Bolyai Math., 56(2011), no. 3, 135-146.
Mitrinovic, D.S., Pecaric, J., Fink, A.M., Classical and New Inequalities in Analysis, Kluwer Academic Publishers, Dordrecht, 1993.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Studia Universitatis Babeș-Bolyai Mathematica
![Creative Commons License](http://i.creativecommons.org/l/by-nc-nd/4.0/88x31.png)
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.