Harmonic mappings and its directional convexity
DOI:
https://doi.org/10.24193/subbmath.2021.4.07Keywords:
Harmonic functions, half-plane mappings, convexity in one direction, harmonic convolution, directional convexity, Rouche’s theorem.Abstract
For any $\mu _{j}\ (\mu _{j}\in \mathbb{C},\left\vert \mu _{j}\right\vert
=1,j=1,2)$, we consider the rotations $f_{\mu _{1}}$ and $F_{\mu _{2}}$ of
right half-plane harmonic mappings $f,F\in S_{\mathcal{H}}$ which are CHD
with the prescribed dilatations $\omega _{f}(z)=\left( a-z\right) /\left(
1-az\right) $ for some $a$ $\left( -1<a<1\right) $ and $\omega _{F}(z)=$ $
e^{i\theta }z^{n}$ $\left( n\in \mathbb{N},\theta \in \mathbb{R}\right) $, $\omega _{F}(z)=$ $\left( b-z\right) /\left( 1-bz\right) $, $\omega
_{F}(z)=\left( b-ze^{i\phi }\right) /\left( 1-bze^{i\phi }\right) $ $%
(-1<b<1,\phi \in \mathbb{R})$, respectively. It is proved that the
convolution $f_{\mu _{1}}\ast F_{\mu _{2}}\in S_{\mathcal{H}}$ and is convex
in the direction of $\overline{\mu _{1}\mu _{2}}$ under certain conditions
on the parameters involved.
Mathematics Subject Classification (2010): 31A05, 30C45, 30C55.
References
Beig, S., Ravichandran, V., Convolution and convex combination of harmonic mappings, Bull. Iranian Math. Soc., 45(2019), no. 5, 1467-1486.
Clunie, J., Sheil-Small, T., Harmonic univalent functions, Ann. Acad. Sci. Fenn. Ser. A I Math., 9(1984), 3-25.
Dorff, M., Convolutions of planar harmonic convex mappings, Complex Variables Theory Appl., 45(2001), no. 3, 263-271.
Dorff, M., Nowak, M., Woloszkiewicz, M., Convolutions of harmonic convex mappings, Complex Var. Elliptic Equ., 57(2012), no. 5, 489-503.
Dorff, M., Rolf, J.S., Anamorphosis, mapping problems, and harmonic univalent functions, in: Explorations in Complex Analysis, 197-269, Classr. Res. Mater. Ser, Math. Assoc. America, Washington, DC.
Kumar, R., et al., Convolution properties of some harmonic mappings in the right half-plane, Bull. Malays. Math. Sci. Soc., 39(2016), no. 1, 439-455.
Kumar, R., Gupta, S., Singh, S., Convolution properties of a slanted right half-plane mapping, Mat. Vesnik, 65(2013), no. 2, 213-221.
Lewy, H., On the non-vanishing of the Jacobian in certain one-to-one mappings, Bull. Amer. Math. Soc., 42(1936), no. 10, 689-692.
Li, Y., Liu, Z., Convolutions of harmonic right half-plane mappings, Open Math., 14(2016), no. 1, 789-800.
Li, L., Ponnusamy, S., Convolutions of slanted half-plane harmonic mappings, Analysis (Munich), 33(2013), no. 2, 159-176.
Li, L., Ponnusamy, S., Solution to an open problem on convolutions of harmonic mappings, Complex Var. Elliptic Equ., 58(2013), no. 12, 1647-1653.
Li, L., Ponnusamy, S., Note on the convolution of harmonic mappings, Bull. Aust. Math. Soc., 99(2019), no. 3, 421-431.
Liu, Z., Ponnusamy, S., Univalency of convolutions of univalent harmonic right half-plane mappings, Comput. Methods Funct. Theory, 17(2017), no. 2, 289-302.
Pommerenke, C., On starlike and close-to-convex functions, Proc. London Math. Soc., 13(1963), no. 3, 290-304.
Rahman, Q.I., Schmeisser, G., Analytic Theory of Polynomials, London Mathematical Society Monographs. New Series, 26, The Clarendon Press, Oxford University Press, Oxford, 2002.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Studia Universitatis Babeș-Bolyai Mathematica
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.