On (p, q)-Opial type inequalities for (p, q)-calculus

Authors

DOI:

https://doi.org/10.24193/subbmath.2021.4.04

Keywords:

Opial inequality, H¨older’s inequality.

Abstract

In this paper, we establish some (p, q)-Opial type inequalities and generalization of (p, q)-Opial type inequalities.

Mathematics Subject Classification (2010): 26D10, 26D15, 81S25.

References

Agarwal, R.P., Difference Equations and Inequalities, Marcel Dekker Inc., New York, 1992.

Alp, N., Bilisik, C.C., Sarikaya, M.Z., q-Opial type inequality for quantum integral, Filomat, 33(13)(2019), 4175-4184.

Alp, N., Sarikaya, M. Z., Kunt, M., Iscan, I., q-Hermite Hadamard inequalities and quantum estimates for midpoint type inequalities via convex and quasi-convex functions, Journal of King Saud University-Science, 30(2018), 193-203.

Beesack, P.R., Das, K.M., Extensions of Opial’s inequality, Pacific J. Math., 26(1968), 215-232.

Budak, H., Sarikaya, M.Z., New inequalities of Opial type for conformable fractional integrals, Turkish J. Math., 41(2017), 1164-1173.

Bukweli-Kyemba, J.D., Hounkonnou, M.N., Quantum deformed algebras: coherent states and special functions, arXiv:1301.0116v1, 2013.

Cheung, W.S., Some new Opial-type inequalities, Mathematika, 37(1990), 136-142.

Cheung, W.S., Some generalized Opial-type inequalities, J. Math. Anal. Appl., 162(1991), 317-321.

Das, K.M., An inequality similar to Opial’s inequality, Proc. Amer. Math. Soc., 22(1969), 378-387.

Gauchman, H., Integral inequalities in q-calculus, Comput. Math. Appl., 47(2004), 281- 300.

Hua, L.K., On an inequality of Opial, Scientia Sinica, 14(1965), 789-790.

Jackson, F.H., On a q-definite integrals, Quarterly J. Pure Appl. Math., 41(1910), 193- 203.

Jagannathan, R., Srinivasa Rao, K., Tow-parameter quantum algebras, twin-basic numbers, and associated generalized hypergeometric series, arXiv:math/0602613v, 2006.

Kac, V., Cheung, P., Quantum Calculus, Springer, 2001.

Kunt, M., Iscan, I., Alp, N., Sarikaya, M.Z., (p, q)-Hermite-Hadamard inequalities and (p, q)-estimates for midpoint type inequalities via convex and quasi-convex functions, Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Mat. RACSAM, DOI 10.1007/s13398- 017-0402-y(2017).

Mitrinovic, D.S., Analytic Inequalities, Springer, Berlin, 1970.

Olech, C., A simple proof of a certain result of Z. Opial, Ann. Polon. Math., 8(1960), 61-63.

Opial, Z., Sur une inegalit´e, Ann. Polon. Math., 8(1960), 29-32.

Pachpatte, B.G., A note on some new Opial type integral inequalities, Octogan Math. Mag., 7(1999), 80-84.

Pachpatte, B.G., On Opial-type integral inequalities, J. Math. Anal. Appl., 120(1986), 547-556.

Sadjang, P.N., On the fundamental theorem of (p, q)-calculus and some (p, q)-Taylor formulas, arXiv:1309.3934v1, 2013.

Saker, S.H., Abdou, M.D., Kubiaczyk, I., Opial and Polya type inequalities via convexity, Fasc. Math., 60(2018), no. 1, 145-159.

Sarıkaya, M.Z., Bili¸sik, C.C., Some Opial type inequalities for conformable fractional integrals, AIP Conference Proceedings, 1991, 020013 (2018); doi: 10.1063/1.5047886.

Sarıkaya, M.Z., Bili¸sik, C.C., On a new Hardy type inequalities involving fractional integrals via Opial type inequalities, 7-9 October, 2016, Giresun, Turkey.

Sudsutad, W., Ntouyas, S.K., Tariboon, J., Quantum integral inequalities for convex functions, J. Math. Inequal., 9(3)(2015), 781-793.

Trable, J., On a boundary value problem for system of ordinary differential equatins of second order, Zeszyty Nauk. Univ. Jagiello. Prace Mat., 15(1971), 159-168.

Tunc¸, M., Gov, E., (p, q)-Integral inequalities, RGMIA Res. Rep. Coll., 19(2016), Art. 97, 1-13.

Tunc¸, M., Gov, E., Some integral inequalities via (p, q)-calculus on finite intervals, RGMIA Res. Rep. Coll., 19(2016), Art. 95, 1-12.

Tunc¸, M., Gov, E., (p, q)-integral inequalities for convex functions, RGMIA Res. Rep. Coll., 19(2016), Art. 98, 1-12.

Wong, J.S.W., A discrete analogue of Opial’s inequality, Canad. Math. Bull., 10(1967), 115-118.

Downloads

Published

2021-12-30

How to Cite

ALP, N., & SARIKAYA, M. Z. (2021). On (p, q)-Opial type inequalities for (p, q)-calculus. Studia Universitatis Babeș-Bolyai Mathematica, 66(4), 641–657. https://doi.org/10.24193/subbmath.2021.4.04

Issue

Section

Articles

Most read articles by the same author(s)

Similar Articles

<< < 1 2 3 4 5 6 7 > >> 

You may also start an advanced similarity search for this article.