On a Fredholm-Volterra integral equation

Authors

  • Alexandru-Darius FILIP Babe¸s-Bolyai University, Faculty of Economics and Business Administration, Department of Statistics-Forecasts-Mathematics, Teodor Mihali Street, No. 58-60, 400591 Cluj-Napoca, Romania, e-mail: darius.filip@econ.ubbcluj.ro
  • Ioan A. RUS Babe¸s-Bolyai University, Faculty of Mathematics and Computer Sciences, 1, Kog˘alniceanu Street, 400084 Cluj-Napoca, Romania, e-mail: iarus@math.ubbcluj.ro

DOI:

https://doi.org/10.24193/subbmath.2021.3.12

Keywords:

Fredholm-Volterra integral equation, existence, uniqueness, contraction, fiber contraction, Maia theorem, successive approximation, fixed point, Picard operator.

Abstract

In this paper we give conditions in which the integral equation

x(t) =r K(t, s, x(s))ds r H(t, s, x(s))ds + g(t), t ∈ [a, b]a

where a < c < b, K C([a, b] × [a, c] × B, B), H C([a, b] × [a, b] × B, B), g C([a, b], B), with B a (real or complex) Banach space, has a unique solution in C([a, b], B). An iterative algorithm for this equation is also given.

Mathematics Subject Classification (2010): 45N05, 47H10, 47H09, 54H25.

References

Bolojan, O.-M., Fixed Point Methods for Nonlinear Differential Systems with Nonlocal Conditions, Casa Cartii de Stiinta, Cluj-Napoca, 2013.

Boucherif, A., Differential equations with nonlocal boundary conditions, Nonlinear Anal., 47(2001), 2419-2430.

Boucherif, A., Precup, R., On the nonlocal initial value problem for first order differential equations, Fixed Point Theory, 4(2003), 205-212.

Filip, A.-D., Fixed Point Theory in Kasahara Spaces, Casa Cartii de Stiinta, Cluj-Napoca, 2015.

Nica, O., Nonlocal initial value problems for first order differential systems, Fixed Point Theory, 13(2012), 603-612.

Petrusel, A., Rus, I.A., A class of functional integral equations with applications to a bilocal problem, 609-631. In: Topics in Mathematical Analysis and Applications (Rassias, Th.M. and T´oth, L., Eds.), Springer, 2014.

Precup, R., Methods in Nonlinear Integral Equations, Kluwer, Dordrecht-Boston- London, 2002.

Rus, I.A., On a fixed point theorem of Maia, Stud. Univ. Babe¸s-Bolyai Math., 22(1977), no.1, 40-42.

Rus, I.A., Picard operators and applications, Sci. Math. Jpn., 58(2003), 191-219.

Rus, I.A., Abstract models of step method which imply the convergence of successive approximations, Fixed Point Theory, 9(2008), no. 1, 293-307.

Rus, I.A., Some variants of contraction principle in the case of operators with Volterra property: step by step contraction principle, Adv. Theory Nonlinear Anal. Appl., 3(2019), no. 3, 111-120.

Rus, I.A., S¸erban, M.-A., Basic problems of the metric fixed point theory and the rele- vance of a metric fixed point theorem, Carpathian J. Math., 29(2013), no. 2, 239-258.

Serban, M.-A., Teoria Punctului Fix pentru Operatori Definiti pe Produs Cartezian, Presa Univ. Clujeana, Cluj-Napoca, 2002.

Downloads

Published

2021-09-30

How to Cite

FILIP, A.-D., & RUS, I. A. (2021). On a Fredholm-Volterra integral equation. Studia Universitatis Babeș-Bolyai Mathematica, 66(3), 567–573. https://doi.org/10.24193/subbmath.2021.3.12

Issue

Section

Articles

Most read articles by the same author(s)

Similar Articles

<< < 7 8 9 10 11 12 13 14 15 16 > >> 

You may also start an advanced similarity search for this article.