Group graded Morita equivalences for wreath products
DOI:
https://doi.org/10.24193/subbmath.2021.3.01Keywords:
Group graded algebras, wreath products, Morita equivalences, crossed products, centralizer subalgebra.Abstract
Starting with group graded Morita equivalences, we obtain Morita equivalences for tensor products and wreath products.
Mathematics Subject Classification (2010): 16W50, 20E22, 20C05, 20C20, 16D90, 16S35.
References
Marcus, A., Representation Theory of Group-Graded Algebras, Nova Science Publ. Inc., 1999.
Marcus, A., Minuta, V.A., Group graded endomorphism algebras and Morita equivalences, Mathematica, 62(85)(2020), no. 1, 73-80.
Marcus, A., Minuta, V.A., Character triples and equivalences over a group graded G-algebra, J. Algebra, 565(2021), 98-127.
Minuta, V.A., Graded Morita theory over a G-graded G-acted algebra, Acta Univ. Sapientiae Math., 12(2020), no. 1, 164-178.
Spath, B., A reduction theorem for Dade’s projective conjecture, J. Eur. Math. Soc. (JEMS), 19(2017), no. 4, 1071-1126.
Spa¨th, B., Inductive Conditions for Counting Conjectures via Character Triples, in Representation Theory - Current Trends and Perspectives, (H. Krause, P. Littelmann, G. Malle, K.H. Neeb, C. Schweigert, Eds.), EMS Ser. Congr. Rep., Zu¨rich, 2017, 665-680.
Spa¨th, B., Reduction theorems for some global-local conjectures, in Local Representation Theory and Simple Groups, (R. Kessar, G. Malle, D. Testerman, Eds.), EMS Ser. Lect. Math., Zu¨rich, 2018, 23-61.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Studia Universitatis Babeș-Bolyai Mathematica
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.