ℵ1-A-coseperable groups

Authors

  • Ulrich ALBRECHT Department of Mathematics Auburn University Auburn, AL 36849, U.S.A. e-mail: albreuf@auburn.edu

Keywords:

ℵ1-a-coseparable groups, Martin's axiom, endomorphism rings.

Abstract

Let A be a countable self-small Abelian group with a right Noetherian right hereditary endomorphism ring. We show that the question whether strongly-ℵ1-A-generated groups are ℵ1-A-coseparable is undecidable in ZFC. Our main focus is on the algebraic aspect of the proof, not on the underlying set-theory.

Mathematics Subject Classification (2010): 20K20, 20K40.

References

Albrecht, U., Endomorphism rings and A-projective torsion-free Abelian Groups, Abelian Group Theory, Proceedings Honolulu 1982/83, Springer Lecture Notes in Mathematics1006, Springer Verlag, Berlin, New York, Heidelberg, 1983, 209-227.

Albrecht, U., A-projective groups of large Cardinality, Abelian Group Theory and Modules, Proceedings Udine 1984, CISM Courses and Lectures 287, Springer Verlag, Wien, New York, 1984, 233-243.

Albrecht, U., Abelian groups A, such that the category of A-solvable groups is preabelian, Contemporary Mathematics 87(1989), 117-131.

Albrecht, U., Baer's lemma and Fuchs' problem 84a, Transactions of the American Mathematical Society, 293(1986), 565-582.

Albrecht, U., Endomorphism rings and a generalization of torsion-freeness and purity, Communications in Algebra, 17(5)(1989), 1101-1135.

Albrecht, U., Endomorphism rings, tensor products, and Fuchs' problem 47, Warfield Memorial Volume, Contemporary Mathematics, 130(1992), 17-31.

Albrecht, U., A-Whitehead groups, accepted for publication in Studia UBB Math.

Arnold, D.M., Lady, L., Endomorphism rings and direct sums of torsion-free Abelian groups, Trans. Amer. Math. Soc., 211(1975), 225-237.

Arnold, D.M., Murley, C.E., Abelian groups A, such that Hom(A;) preserves direct sums of copies of A, Pac. J. Math., 56(1975), 7-20.

Arnold, D. M., Finite Rank Torsion Free Abelian Groups and Rings, Lecture Notes in Mathematics Vol. 931, Springer-Verlag Berlin-Heidelberg-New York, 1982.

Chatters, A.W., Hajarnavis, C.R., Rings with Chain Conditions, Pitman, 1980.

Corner, A.L.S., Every countable reduced torsion-free ring is an endomorphism ring, Proc. London Math. Soc., 13(1963), 687-710.

Eklof, P.C., Mekler, A.H., Almost Free Modules, Vol. 46, North Holland Mathematical Library, 1990.

Goodearl, K.R., Ring Theory, Pure and Applied Mathematics No. 33, Marcel Dekker, New York-Basel, 1976.

Gobel, R., Trilifaj, J., Approximations and Endomorphism Algebras of Modules, de Gruyter Expositions in Mathematics 41, W. de Gruyter, Berlin - New York, 2006.

Huber, M., War_eld, R.B., Homomorphisms between Cartesian powers of an Abelian group, Lecture Notes in Mathematics, 874(1981), 202-227.

Ulmer, F., A atness criterrion in Groethendick categories, Inventiones Math., 19(1973), 331-336.

Downloads

Published

2015-12-30

How to Cite

ALBRECHT, U. (2015). ℵ1-A-coseperable groups. Studia Universitatis Babeș-Bolyai Mathematica, 60(4), 493–507. Retrieved from https://studia.reviste.ubbcluj.ro/index.php/subbmathematica/article/view/5819

Issue

Section

Articles

Similar Articles

1 2 > >> 

You may also start an advanced similarity search for this article.