Classes of an univalent integral operator

Authors

  • Camelia B˘ĂRBATU Babe¸s-Bolyai University, Faculty of Mathematics and Computer Sciences, 1, Kog˘alniceanu Street, 400084 Cluj-Napoca, Romania, e-mail: camipode@yahoo.com
  • Daniel BREAZ “1 Decembrie 1918” University, Department of Mathematics, Faculty of Exact Science and Engineering 5, Gabriel Bethlen Street, 510009 Alba-Iulia, Romania, e-mail: dbreaz@uab.ro https://orcid.org/0000-0002-0095-1346

DOI:

https://doi.org/10.24193/subbmath.2021.2.10

Keywords:

Integral operator, analytic and univalent functions, unit disk.

Abstract

In this paper we introduce a new general integral operator for analytic functions in the open unit disk U and we obtain sufficient conditions for univalence of this integral operator.

Mathematics Subject Classification (2010): 30C45.

References

Aldea, C.L., Pescar, V., Univalence criteria for a general integral operator, Transilvania University of Brasov, 10(2017), no. 1, 19-30.

Breaz, D., Breaz, N., Two integral operators, Studia Univ. Babes-Bolyai Math., 47(2002), no. 3, 13-21.

Breaz, D., Breaz, N., Srivastava, H.M., An extension of the univalent condition for a family of integral operators, Appl. Math. Lett., 22(2009), no. 3, 41-44.

Breaz, D., Owa, S., Breaz, N., A new integral univalent operator, Acta Univ. Apulensis Math. Inform., 16(2008).

Frasin, B.A., Order of convexity and univalence of general integral operator, J. Franklin Inst., 348(2011), 1013-1019.

Frasin, B.A., Sufficient conditions for the univalence of an integral operator, Asia Pacific J. Math., 5(2018), no. 1, 85-91.

Kim, Y.J., Merkes, E.P., On an integral of powers of a spirallike function, Kyungpook Math. J., 12(1972), 249-253.

Mayer, O., The Functions Theory of the One Variable Complex, Editura Academiei, Bucuresti, Romania, 1981, 101-117.

Ovesea, H., Integral operators of Bazilvic type, Bull. Math. Soc. Sci. Math. Roumanie (N.S.), 37(1993), 115-125.

Ozaki, S., Nunokawa, M., The Schwarzian derivative and univalent functions, Proceedings of the American Mathematical Society, Mathematics, 33(1972), 392-394.

Pascu, N.N., An improvement of Beker’s univalence criterion, Proceedings of the Commemorative Session: Simion Sto¨ılow (Brasov, 1987), 43-48.

Pascu, N.N., Pescar, V., On the integral operators of Kim-Merkes and Pfaltzgraff, Mathematica (Cluj), 32(55)(1990), no. 2, 185-192.

Pescar, V., New univalence criteria for some integral operators, Studia Univ. Babes-Bolyai Math., 59(2014), no. 2, 185-192.

Pescar, V., A new generalization of Ahlfors’s and Becker’s criterion of univalence, Bull. Malaysian Math. Soc., 19(1996), no. 2, 53-54.

Pescar, V., Univalence criteria of certain integral operators, Acta Ciencia Indica Math, 29(2003), no. 1, 135-138.

Pescar, V., On the univalence of some integral operators, General Math., Sibiu, 14(2006), no. 2, 77-84.

Pescar, V., Owa, S., Univalence of certain integral operators, Int. J. Math. Math. Sci., 23(2000), 697-701.

Pfaltzgraff, J.A., Univalence of the integral fl(z)λ, Bul. London Math. Soc., 7(3)(1975), 254-256. Classes of an univalent integral operator 351

Stanciu, L.F., The Univalence Conditions of Some Integral Operators, Hindawi Publishing Corporation, 2012.

Stanciu, L.F., Breaz, D., Srivastava, H.M., Some criteria for univalence of a certain integral operator, Novi Sad J. Math., 43(2013), no. 2, 51-57.

Downloads

Published

2021-06-30

How to Cite

B˘ĂRBATU, C., & BREAZ, D. (2021). Classes of an univalent integral operator. Studia Universitatis Babeș-Bolyai Mathematica, 66(2), 339–351. https://doi.org/10.24193/subbmath.2021.2.10

Issue

Section

Articles

Similar Articles

<< < 28 29 30 31 32 33 34 > >> 

You may also start an advanced similarity search for this article.