Approximations of the solution of a stochastic Ginzburg-Landau equation

Authors

  • Brigitte E. BRECKNER Babe¸s-Bolyai University, Faculty of Mathematics and Computer Sciences, 1, Kog˘alniceanu Street, 400084 Cluj-Napoca, Romania e-mail: brigitte@math.ubbcluj.ro
  • Hannelore LISEI Babe¸s-Bolyai University, Faculty of Mathematics and Computer Sciences, 1, Kog˘alniceanu Street, 400084 Cluj-Napoca, Romania, e-mail: hanne@math.ubbcluj.ro https://orcid.org/0000-0003-1934-6274

DOI:

https://doi.org/10.24193/subbmath.2021.2.07

Keywords:

Stochastic Ginzburg-Landau equation, power-type nonlinearity, multiplicative noise.

Abstract

This paper presents a method to approximate the solution of a stochastic Ginzburg-Landau equation with multiplicative noise term. Error estimates for the approximation of the solution are given.

Mathematics Subject Classification (2010): 60H15, 34K28, 35Q56.

References

Barton-Smith, M., Global solution for a stochastic Ginzburg-Landau equation with multiplicative noise, Stoch. Anal. Appl., 22(2004), no. 1, 1-18.

Barton-Smith, M., Invariant measure for the stochastic Ginzburg Landau equation, NoDEA Nonlinear Differential Equations Appl., 11(2004), no. 1, 29-52.

Cao, G., He, K., On a type of stochastic differential equations driven by countably many Brownian motions, J. Funct. Anal., 203(2003), no. 1, 262-285.

Gajewski, H., Uber Naherungsverfahren zur Losung der nichtlinearen Schrodinger-Gleichung, Math. Nachr., 85(1978), 283-302.

Hoshino, M., Inahama, Y., Naganuma, N., Stochastic complex Ginzburg-Landau equation with space-time white noise, Electron. J. Probab., 22(2017), Paper No. 104, 68 pp.

Jiu, Q., Liu, J., Existence and uniqueness of global solutions of the nonlinear Schrodinger equation on R2, Acta Math. Appl. Sin. Engl. Ser., 13(1997), no. 4, 414-424.

Keller, D., Lisei, H., Variational solution of stochastic Schr¨odinger equations with power- type nonlinearity, Stoch. Anal. Appl., 33(2015), 653-672.

Lions, J.-L., Quelques Methodes de Resolution des Problemes aux Limites non Lineaires, Dunod, Gauthier-Villars, Paris, 1969.

Lisei, H., Keller, D., A stochastic nonlinear Schrodinger problem in variational formulation, NoDEA Nonlinear Differential Equations Appl., 23(2016), no. 2, Art. 22, 27 pp.

Liu, D., Convergence of the spectral method for stochastic Ginzburg-Landau equation driven by space-time white noise, Commun. Math. Sci., 1(2003), no. 2, 361-375.

Liu, X., Jia, H., Existence of suitable weak solutions of complex Ginzburg-Landau equations and properties of the set of singular points, J. Math. Phys., 44(2003), no. 11, 5185-5193.

Pecher, H., von Wahl, W., Time dependent nonlinear Schr¨odinger equations, Manuscripta Math., 27(1979), no. 2, 125-157.

Temam, R., Infinite-Dimensional Dynamical Systems in Mechanics and Physics, volume 68 of Applied Mathematical Sciences, Springer-Verlag, New York, second edition, 1997.

Vishik, M.J., Fursikov, A.V., Mathematical Problems of Statistical Hydromechanics, Kluwer Academic Publishers Group, Dordrecht, 1988.

Zeidler, E., Nonlinear Functional Analysis and its Applications. II/A: Linear Monotone Operators, Springer-Verlag, New York, 1990.

Downloads

Published

2021-06-30

How to Cite

BRECKNER, B. E., & LISEI, H. (2021). Approximations of the solution of a stochastic Ginzburg-Landau equation. Studia Universitatis Babeș-Bolyai Mathematica, 66(2), 307–319. https://doi.org/10.24193/subbmath.2021.2.07

Issue

Section

Articles

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.