Barbashin conditions for uniform instability of evolution operators

Authors

  • Mihail MEGAN Academy of Romanian Scientists, Independen¸tei 54, 050094 Bucharest, Romania and West University of Timi¸soara, Faculty of Mathematics and Computer Science, Departament of Mathematics, V. Pˆarvan Blv. 4, 300223 Timi¸soara, Romania, e-mail: mihail.megan@e-uvt.ro https://orcid.org/0000-0001-5127-6179
  • Rovana BORUGA (TOMA) West University of Timi¸soara, Faculty of Mathematics and Computer Science, Departament of Mathematics, V. Pˆarvan Blv. 4, 300223 Timi¸soara, Romania e-mail: rovanaboruga@gmail.com https://orcid.org/0000-0002-6571-347X

DOI:

https://doi.org/10.24193/subbmath.2021.2.06

Keywords:

Evolution operator, uniform instability, Barbashin conditions.

Abstract

The aim of the present paper is to give some characterization theorems of Barbashin type for the uniform exponential instability and uniform polynomial instability behavior of evolution operators. Also, some examples which illustrate the connections between the concepts presented are given.

Mathematics Subject Classification (2010): 47B01, 34D05.

References

Barbashin, E.A., Introduction in the Theory of Stability, Nauka, Moscow, 1967.

Barreira, L., Valls, C., Polynomial growth rates, Nonlinear Anal., 71(2009), 5208-5219.

Bento, A., Silva, C., Stable manifolds for nonuniform polynomial dichotomies, J. Funct. Anal., 257(2009), 122-148.

Biris, L., On uniform exponential instability property of evolution operators in Banach spaces, An. Univ. Vest Timis. Ser. Mat.-Inform., 47(2009), no. 1, 3-9.

Boruga, R., Megan, M., On Some Concepts Regarding the Polynomial Behaviors for Evolution Operators in Banach Spaces, International Symposium Research and Education in an Innovation Era Conference, Mathematics and Computer Science, 2018, 18-24.

Boruga, R., Megan, M., Datko criteria for uniform instability in Banach spaces, Stud. Univ. Babes-Bolyai Math., 66(2021), no. 1, 115-122.

Buse, C., Megan, M., Preda, P., Prajea, M-S., The strong variant of a Barbashin theorem on stability of solutions for non-autonomous differential equations in Banach spaces, Integral Equations Operator Theory, 59(2007), 491-500.

Datko, R., Uniform asymptotic stability of evolutionary processes in a Banach space, SIAM J. Math. Anal., 3(1972), 428-445.

Megan, M., Sasu, A.L., Sasu, B., The Asymptotic Behavior of Evolution Families, Mirton Publishing House, 2003.

Megan, M., Sasu, A.L., Sasu, B., Banach function spaces and exponential instability of evolution families, Arch. Math. (Brno), 39(2003), 277-286.

Mihit, C.L., Megan, M., Integral characterizations for the (h; k)-splitting of skew- evolution semiflows, Stud. Univ. Babes-Bolyai Math., 62(2017), no. 3, 353-365.

Popa, I.L., Nonuniform exponential instability for evolution operators in Banach spaces, Proc. of the 12th Symposium of Math. and its Appl. ”Politehnica” Univ. of Timi¸soara, November 5-7, 2009.

Ramneantu, M.L., Megan, M., Ceau¸su, T., Polynomial instability of evolution operators in Banach spaces, Carpathian J. Math., 29(2013), no. 1, 77-83.

Sasu, A.L., Megan, M., Sasu, B., On Rolewicz-Zabczyk techniques in the stability theory of dynamical systems, Fixed Point Theory, 13(2012), 205-236.

Stoica, C., Megan, M., Uniform exponential instability of evolution operators in Banach spaces, An. Univ. Vest Timis. Ser. Mat.-Inform., 44(2006), no. 2, 143-148.

Downloads

Published

2021-06-30

How to Cite

MEGAN, M., & BORUGA (TOMA), R. (2021). Barbashin conditions for uniform instability of evolution operators. Studia Universitatis Babeș-Bolyai Mathematica, 66(2), 297–305. https://doi.org/10.24193/subbmath.2021.2.06

Issue

Section

Articles

Similar Articles

<< < 7 8 9 10 11 12 13 14 15 16 > >> 

You may also start an advanced similarity search for this article.