Shepard operator of least squares thin-plate spline type

Authors

  • Teodora CĂTINAȘ Babeș-Bolyai University, Faculty of Mathematics and Computer Sciences, 1, Kogălniceanu Street, 400084 Cluj-Napoca, Romania, e-mail: tcatinas@math.ubbcluj.ro https://orcid.org/0000-0002-9202-6982
  • Andra MALINA Babeș-Bolyai University, Faculty of Mathematics and Computer Sciences, 1, Kogălniceanu Street, 400084 Cluj-Napoca, Romania, e-mail: andra.malina@stud.ubbcluj.ro

DOI:

https://doi.org/10.24193/subbmath.2021.2.02

Keywords:

Scattered data, Shepard operator, least squares approximation, thin- plate spline, knot points.

Abstract

We obtain some new Shepard type operators based on the classical, the modified Shepard methods and the least squares thin-plate spline function. Given some sets of points, we compute some representative subsets of knot points following an algorithm described by J. R. McMahon in 1986.

Mathematics Subject Classification (2010): 41A05, 41A25, 41A80.

References

Catinas, T., The combined Shepard-Abel-Goncharov univariate operator, Rev. Anal. Numer. Theor. Approx., 32(2003), 11-20.

Catinas, T., The combined Shepard-Lidstone bivariate operator, In: de Bruin, M.G. et al. (eds.): Trends and Applications in Constructive Approximation. International Series of Numerical Mathematics, Springer Group-Birkhauser Verlag, 151(2005), 77-89.

Catinas, T., Bivariate interpolation by combined Shepard operators, Proceedings of 17th IMACS World Congress, Scientific Computation, Applied Mathematics and Simulation, ISBN 2-915913-02-1, 2005, 7 pp.

Catinas, T., The bivariate Shepard operator of Bernoulli type, Calcolo, 44 (2007), no. 4, 189-202.

Coman, Gh., The remainder of certain Shepard type interpolation formulas, Stud. Univ. Babes-Bolyai Math., 32(1987), no. 4, 24-32.

Coman, Gh., Hermite-type Shepard operators, Rev. Anal. Numer. Theor. Approx., 26(1997), 33-38.

Coman, Gh., Shepard operators of Birkhoff type, Calcolo, 35(1998), 197-203.

Farwig, R., Rate of convergence of Shepard’s global interpolation formula, Math. Comp., 46(1986), 577-590.

Franke, R., Scattered data interpolation: tests of some methods, Math. Comp., 38(1982), 181-200.

Franke, R., Nielson, G., Smooth interpolation of large sets of scattered data, Int. J. Numer. Meths. Engrg., 15(1980), 1691-1704.

Lazzaro, D., Montefusco, L.B., Radial basis functions for multivariate interpolation of large scattered data sets, J. Comput. Appl. Math., 140(2002), 521-536.

McMahon, J.R., Knot selection for least squares approximation using thin plate splines, M.S. Thesis, Naval Postgraduate School, 1986.

McMahon, J.R., Franke, R., Knot selection for least squares thin plate splines, Technical Report, Naval Postgraduate School, Monterey, 1987.

Renka, R.J., Multivariate interpolation of large sets of scattered data, ACM Trans. Math. Software, 14(1988), 139-148.

Renka, R.J., Cline, A.K., A triangle-based C1 interpolation method, Rocky Mountain J. Math., 14(1984), 223-237.

Shepard, D., A two dimensional interpolation function for irregularly spaced data, Proc. 23rd Nat. Conf. ACM, 1968, 517-523.

Trˆımbitas, G., Combined Shepard-least squares operators - computing them using spatial data structures, Stud. Univ. Babes-Bolyai Math., 47(2002), 119-128.

Zuppa, C., Error estimates for moving least square approximations, Bull. Braz. Math. Soc., New Series, 34(2003), no. 2, 231-249.

Downloads

Published

2021-06-30

How to Cite

CĂTINAȘ, T., & MALINA, A. (2021). Shepard operator of least squares thin-plate spline type. Studia Universitatis Babeș-Bolyai Mathematica, 66(2), 257–265. https://doi.org/10.24193/subbmath.2021.2.02

Issue

Section

Articles

Similar Articles

<< < 1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.