Graph-directed random fractal interpolation function

Authors

  • Ildikó SOMOGYI Babe¸s-Bolyai University, Faculty of Mathematics and Computer Sciences, 1, Kog˘alniceanu Street, 400084 Cluj-Napoca, Romania, e-mail: ilkovacs@math.ubbcluj.ro
  • Anna SOÓS Babe¸s-Bolyai University, Faculty of Mathematics and Computer Sciences, 1, Kog˘alniceanu Street, 400084 Cluj-Napoca, Romania, e-mail: asoos@math.ubbcluj.ro https://orcid.org/0000-0002-3305-0296

DOI:

https://doi.org/10.24193/subbmath.2021.2.01

Keywords:

Fractal interpolation function, iterated function system, random fractal interpolation function.

Abstract

Barnsley introduced in [1] the notion of fractal interpolation function (FIF). He said that a fractal function is a (FIF) if it possess some interpolation properties. It has the advantage that it can be also combined with the classical methods or real data interpolation. Hutchinson and Ruschendorf [7] gave the stochastic version of fractal interpolation function. In order to obtain fractal interpolation functions with more exibility, Wang and Yu [9] used instead of a constant scaling parameter a variable vertical scaling factor. Also the notion of fractal interpolation can be generalized to the graph-directed case introduced by Deniz and Ozdemir in [5]. In this paper we study the case of a stochastic fractal interpolation function with graph-directed fractal function.

Mathematics Subject Classification (2010): 28A80, 60G18.

References

Barnsley, M.F., Fractal functions and interpolation, Constructive Approximation, 2(1986), 303-329.

Barnsley, M.F., Fractals Everywhere, Academic Press, 1993.

Barnsley, M.F., Demko, S., Iterated function systems and the global construction of fractals, Pro. Roy. Soc. London, A399(1985), 243-275.

Chand, A.K.B., Kapoor, G.P., Generalized cubic spline interpolation function, SIAM J. Numer. Anal., 44(2006), no. 2, 655-676.

Deniz, A., Ozdemir, Y., Grapd-directed fractal interpolation functions, Turk. J. Math., 41(2017), 829-840.

Edgar, G., Measure, Topology and Fractal Geometry, Springer, New York, 2008.

Hutchinson, J.E., Ruschendorf, L., Selfsimilar fractals and selfsimilar random fractals, Progress in Probability, 46(2000), 109-123.

Nevascues, M.A., Sebastia´n, M.V., Generalization of Hermite functions by fractal interpolation, J. Approx. Theory, 131(2004), no. 1, 19-29.

Wang, H.Y., Yu, J.S., Fractal interpolation functions with variable parameters and their analytical properties, J. Approx. Theory, 175(2013), 1-18.

Downloads

Published

2021-06-30

How to Cite

SOMOGYI, I., & SOÓS, A. (2021). Graph-directed random fractal interpolation function. Studia Universitatis Babeș-Bolyai Mathematica, 66(2), 247–255. https://doi.org/10.24193/subbmath.2021.2.01

Issue

Section

Articles

Similar Articles

<< < 8 9 10 11 12 13 14 15 16 17 > >> 

You may also start an advanced similarity search for this article.