Datko criteria for uniform instability in Banach spaces

Authors

  • Rovana BORUGA (TOMA) West University of Timi¸soara, Faculty of Mathematics and Computer Science, Department of Mathematics, V. Pˆarvan Blv. 4, 300223 Timi¸soara, Romania, e-mail: rovanaboruga@gmail.com https://orcid.org/0000-0002-6571-347X
  • Mihail MEGAN Academy of Romanian Scientists, Independen¸tei 54, 050094 Bucharest, Romania and West University of Timi¸soara, Faculty of Mathematics and Computer Science, Department of Mathematics, V. Pˆarvan Blv. 4, 300223 Timi¸soara, Romania, e-mail: mihail.megan@e-uvt.ro https://orcid.org/0000-0001-5127-6179

DOI:

https://doi.org/10.24193/subbmath.2021.1.10

Keywords:

Evolution operator, uniform instability, Datko criteria.

Abstract

The main objective of this paper is to present some necessary and sufficient conditions of Datko type for the uniform exponential and uniform poly- nomial instability concepts for evolution operators in Banach spaces.

Mathematics Subject Classification (2010): 47D06, 47B01.

References

Barreira, L., Valls, C., Polynomial growth rates, Nonlinear Anal., 71(2009), 5208-5219.

Bento, A., Silva, C., Stable manifolds for nonuniform polynomial dichotomies, J. Funct. Anal., 257(2009), 122-148.

Biris, L., On uniform exponential instability property of evolution operators in Banach spaces, An. Univ. Vest Timis. Ser. Mat.-Inform. 47(2009), no. 1, 3-9.

Boruga, R., Megan, M., On Some Concepts Regarding the Polynomial Behaviors for Evolution Operators in Banach Spaces, International Symposium Research and Education in an Innovation Era Conference, Mathematics and Computer Science, 2018, 18-24.

Datko, R., Uniform Asymptotic Stability of Evolutionary Processes in a Banach Space, SIAM J. Math. Anal., 3(1972), 428-445.

Hai, P.V., Polynomial Stability and Polynomial Instability for Skew-Evolution Semiflows, Results Math., 74(2019), no. 4, art. 175.

Megan, M., Boruga (Toma), R., Barbashin conditions for uniform instability of evolution operators, (to appear in Stud. Univ. Babes-Bolyai Math.).

Megan, M., Sasu, A.L., Sasu, B., The Asymptotic Behavior of Evolution Families, Mirton Publishing House, 2003.

Megan, M., Sasu, A.L., Sasu, B., Banach function spaces and exponential instability of evolution families, Arch. Math. (Brno), 39(2003), 277-286.

Megan, M., Stoica, C., Exponential instability of skew-evolution semiflows in Banach spaces, Stud. Univ. Babes-Bolyai Math., 53(2008), no. 1, 17-24.

Mihit, C.L., On uniform h-stability of evolution operators in Banach spaces, Theory Appl. Math. Comput. Sci., 6(2016), 19-27.

Popa, I.L., Nonuniform exponential instability for evolution operators in Banach spaces, Proc. of the 12th Symposium of Math. and its Appl. ”Politehnica” Univ. of Timisoara, November 5-7, 2009.

R˘amneantu, M.L., Megan, M., Ceausu, T., Polynomial instability of evolution operators in Banach spaces, Carpathian J. Math., 29(2013), no. 1, 77-83.

Stoica, C., Megan, M., Uniform exponential instability of evolution operators in Banach spaces, An. Univ. Vest Timis. Ser. Mat.-Inform., 44(2006), no. 2, 143-148.

Downloads

Published

2021-03-30

How to Cite

BORUGA (TOMA), R., & MEGAN, M. (2021). Datko criteria for uniform instability in Banach spaces. Studia Universitatis Babeș-Bolyai Mathematica, 66(1), 115–122. https://doi.org/10.24193/subbmath.2021.1.10

Issue

Section

Articles

Similar Articles

<< < 12 13 14 15 16 17 

You may also start an advanced similarity search for this article.