Eigenvalues for anisotropic p−Laplacian under a Steklov-like boundary condition
DOI:
https://doi.org/10.24193/subbmath.2021.1.07Keywords:
Eigenvalues, anisotropic p−Laplacian, Steklov-like boundary condi- tion, Sobolev spaces, variational methods.Abstract
The eigenvalue problem −div (1p∇ξ(Fp(∇u))=λa(x)∣u∣q−2u, with $q\in (1, \infty),~ p\in \Big(\frac{Nq}{N+q-1}, \infty\Big),~ p\neq q,$ subject to Steklov-like boundary condition, Fp−1(∇u)∇ξF(∇u)⋅ν=λb(x)∣u∣q−2u is investigated on a bounded Lipschitz domain $\Omega\subset \mathbb{R}^ N,~N\geq 2$. Here, $F$ stands for a $C^2(\mathbb{R}^N\setminus \{0\})$ norm and $a\in L^{\infty}(\Omega),~ b\in L^{\infty}(\partial\Omega)$ are given nonnegative functions satisfying ∫Ωa dx+∫∂Ωb dσ>0. Using appropriate variational methods, we are able to prove that the set of eigenvalues of this problem is the interval $[0, \infty)$.
Mathematics Subject Classification (2010): 35J60, 35J92, 35P30.
References
Adams, R.A., Fournier, J.J.F., Sobolev Spaces, second ed., Pure Appl. Math., 140, Academic Press, New York-London, 2003.
Barbu, L., Morosanu, G., Eigenvalues of the negative (p,q)- Laplacian under a Steklov-like boundary condition, Complex Var. Elliptic Equ., 64(2019), no. 4, 685-700.
Brezis, H., Functional Analysis, Sobolev Spaces and Partial Differential Equations, Springer, 2011.
Casas, E., Fernandez, L.A., A Green’s formula for quasilinear elliptic operators, J. Math.Anal. Appl., 142(1989), 62-73.
Farcaseanu, M., Eigenvalues for Finsler p−Laplacian with zero Dirichlet boundary condition, An. Sti. U. Ovid. Co.-Mat., 24(2016), no. 1, 231-242.
Ferone, V., Kawohl, B., Remarks on Finsler-Laplacian, Proc. Am. Math. Soc., 137 (2008), no. 1, 247-253.
Finsler, P., Uber Kurven und Flachen in Allgemeinen Raumen, (Dissertation, Gottingen, 1918), Birkhauser Verlag, Basel, 1951.
Folland, G.B., Real Analysis: Modern Techniques and Their Applications (2nd ed.), Pure and Applied Mathematics, John Wiley & Sons, Inc. New York, 1999.
Giga, Y., Surface Evolution Equations. A Level Set Approach, Birkha¨user Verlag, Basel, 2006.
Giusti, E., Direct Methods in the Calculus of Variations, 7, World Scientific, Singapore, 2003.
Lˆe, A., Eigenvalue problems for p-Laplacian, Nonlinear Anal. TMA., 64(2006), 1057-1099.
Lindqvist P., Notes on p-Laplace equation, University of Jyv¨askyla, Lectures notes, 2006. [13] Minkowski, H., Allgemeine Lehrsatze uber die konvexen Polyeder, Nachrichten von der Gesellschaft der Wissenschaften zu Gottingen, 1897, 198-219.
Oˆ tani, M., Existence and nonexistence of nontrivial solutions of some nonlinear degenerate elliptic equations, J. Funct. Anal., 76(1988), 140-159.
Taylor, J.E., Crystalline variational problems, Bulletin of the American Mathematical Society, 84(1978), 568-588.
Zeidler, E., Nonlinear Functional Analysis and its Applications: II/B, Nonlinear Monotone Operators, Springer, New York, 1989.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Studia Universitatis Babeș-Bolyai Mathematica
![Creative Commons License](http://i.creativecommons.org/l/by-nc-nd/4.0/88x31.png)
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.