On some evolution inclusions in non separable Banach spaces
DOI:
https://doi.org/10.24193/subbmath.2021.1.02Keywords:
Lusin measurable multifunctions, selection, mild solution.Abstract
We study a Cauchy problem of a class of nonconvex second-order integro-differential inclusions and a boundary value problem associated to a semi-linear evolution inclusion defined by nonlocal conditions in non-separable Banach spaces. The existence of mild solutions is established under Filippov type assumptions.
Mathematics Subject Classification (2010): 34A60.
References
Aubin, J.P., Frankowska, H., Set-valued Analysis, Birkhauser, 1990.
Baliki, A., Benchohra, M., Graef, J.R., Global existence and stability of second order functional evolution equations with infi nite delay, Electronic J. Qual. Theory Dier. Equations, 2016(2016), no. 23, 1-10.
Baliki, A., Benchohra, M., Nieto, J.J., Qualitative analysis of second-order functional evolution equations, Dynamic Syst. Appl., 24(2015), 559-572.
Benchohra, M., Gatsori, E.P., Ntouyas, S.K., Controllability results for semilinear evolution inclusions with nonlocal conditions, J. Optim. Theory Appl., 118(2003), 493-513.
Benchohra, M., Medjadj, I., Global existence results for second order neutral functional differential equations with state-dependent delay, Comment. Math. Univ. Carolin., 57(2016), 169-183.
Benchohra, M., Ntouyas, S.K., Existence of mild solutions of semilinear evolution inclusions with nonlocal conditions, Georgian Math. J., 7(2000), 221-230.
Bressan, A., Colombo, G., Extensions and selections of maps with decomposable values, Studia Math., 90(1988), 69-86.
Byszewski, L., Application of properties of the right-hand sides of evolution equations to an investigation of nonlocal evolution problems, Nonlin. Anal., 33(1998), 413-426.
Byszewski, L., Existence and uniqueness of a classical solution to a functional-differential abstract nonlocal Cauchy problem, J. Appl. Math. Stochastic Anal., 12(1999), 91-97.
Cernea, A., On an evolution inclusion in non separable Banach spaces, Opuscula Math., 29(2009), 131-138.
Cernea, A., A note on a semilinear evolution inclusion with nonlocal conditions, ROMAI J., 12(2016), 33-38.
Cernea, A., A note on the solutions of a second-order evolution inclusion in non separable Banach spaces, Comment. Math. Univ. Carolin., 58(2017), 307-314.
Cernea, A., Some remarks on the solutions of a second-order evolution inclusion, Dynamic Syst. Appl., 27(2018), 319-330.
Cernea, A., On the mild solutions of a class of second-order integro-differential inclusions, J. Nonlinear Variational Anal., 3(2020), 247-256.
De Blasi F.S., Pianigiani, G., Evolution inclusions in non separable Banach spaces, Comment. Math. Univ. Carolin., 40(1999), 227-250.
Filippov, A.F., Classical solutions of differential equations with multivalued right-hand side, SIAM J. Control Optim., 5(1967), 609-621.
Henriquez, H.R., Existence of solutions of nonautonomous second order functional differential equations with in finite delay, Nonlinear Anal., 74(2011), 3333-3352.
Henriquez, H.R., Poblete, V., Pozo, J.C., Mild solutions of non-autonomous second order problems with nonlocal initial conditions, J. Math. Anal. Appl., 412(2014), 1064-1083.
Kozak, M., A fundamental solution of a second-order differential equation in a Banach space, Univ. Iagel. Acta. Math., 32(1995), 275-289.
Kuratowski, K., Ryll-Nardzewski, C., A general theorem on selectors, Bull. Acad. Pol. Sci. Math. Astron. Phys., 13(1965), 397-403.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Studia Universitatis Babeș-Bolyai Mathematica
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.