Applications of implicit parametrizations

Authors

  • Dan TIBA "Simion Stoilow" Institute of Mathematics of the Romanian Academy and Academy of Romanian Scientists, Bucuresti, Romania e-mail: dan.tiba@imar.ro

DOI:

https://doi.org/10.24193/subbmath.2021.1.01

Keywords:

Implicit functions and implicit parametrizations, optimization, optimal control, shape optimization.

Abstract

We review several applications of the implicit parametrization theorem in optimization. In nonlinear programming, we discuss both new forms, with less multipliers, of the known optimality conditions, and new algorithms of global type. For optimal control problems, we analyze the case of mixed equality constraints and indicate an algorithm, while in shape optimization problems the emphasis is on the new penalization approach.

Mathematics Subject Classification (2010): 34A34, 49K21, 49Q10, 26B10.

References

Bonnans, J.F., Shapiro, A., Perturbation Analysis of Optimization Problems, Springer Verlag, New York, 2000.

Ciarlet, P.G., Introduction to Numerical Linear Algebra and Optimization, Cambridge Univ. Press, Cambridge, 1989.

Clarke, F., de Pinho, M.R., Optimal control problems with mixed constraints, SIAM J. Control Optim., 48(2011), 4500-4524.

Hirsch, M.W., Smale, S., Devaney, R.L., Differential Equations, Dynamical Systems and Introduction to Chaos, 3rd ed., Elsevier, Academic Press, New York, 2013.

Makinen, R., Neittaanmaki, P., Tiba, D., On a fi xed domain approach for a shape optimization problem, in: Computational and applied Mathematics II: Differential equations (W.F. Ames, P.J. van Houwen, eds.), North Holland, Amsterdam, 1992, 317-326.

Murat, F., Simon, J., Etude de problemes d'optimal design, in: Optimization techniques. Modeling and optimization in the service of man. Part 2 (J. Cea, ed.), LNCS41, Springer Verlag, Berlin, 1976, 54-62.

Murea, C., Tiba, D., Topological optimization via cost penalization, TMNA, 54(2019), no. 2B, 1023-1050.

Neittaanmaki, P., Sprekels, J., Tiba, D., Optimization of Elliptic Systems. Theory and Applications, Springer Verlag, New York, 2006.

Nicolai, M.R., High dimensional applications of implicit parametrizations in nonlinear programming, Ann. Acad. Rom. Sci. Ser. Math. Appl., 8(2016), 44-55.

Nicolai, M.R., Tiba, D., Implicit functions and parametrization in dimension three: generalized solutions, Discrete Contin. Dyn. Syst., 35(2015), 2701-2710.

Osher, S., Sethian, J.A., Fronts propagating with curvature-dependent speed; algorithms based on Hamiltonian-Jacobi formulation, Journal of Computational Physics, 79(1988), no. 1, 12-49.

de Pinho, M.R., On necessary conditions for implicit control systems, Pure Appl. Funct.Anal., 1(2016), 185-196.

Pironneau, O., Optimal Shape Design for Elliptic Systems, Springer Verlag, Berlin, 1984.

Pontryagin, L.S., Equation Differentielles Ordinaires, MIR, Moscow, 1968.

Sokolovski, J., Zolesio, J.-P., Introduction to Shape Optimization. Shape Sensitivity Analysis, Springer Verlag, Berlin, 1992.

Stuber, M.D., Scott, J.K., Bartar, P.I., Convex and concave relaxations of implicit functions, Optimization Methods and Software, 30(2015), 424-460.

Tiba, D., The implicit functions theorem and implicit parametrizations, Ann. Acad.Rom. Sci. Ser. Math. Appl., 5(2013), 193-208.

Tiba, D., A penalization approach in shape optimization, Atti. Acad. Pelorit. Pericol.Cl. Sci. Fis. Mat. Nat., 16(2018), no. 1, A8.

Tiba, D. Iterated Hamiltonian type systems and applications, JDE, 264(2018), 5465-5479.

Tiba, D., Some remarks on state constraints and mixed constraints, Ann. Acad. Rom.Sci. Ser. Math. Appl., 10(2018), 25-40.

Tiba, D., Neumann boundary conditions in shape optimization, PAFA, 3(2018), 241-253.

Tiba, D., Boundary observation in shape optimization, in: New Trends in Differential Equations, Control Theory and Optimization (V. Barbu, C. Lefter, I. Vrabie, Eds.), World Scienti c, Singapore, 2016, 301-315.

Tiba, D., Implicit parametrizations and applications in optimization and control, MCRF, 10(2020), 455-470.

Tiba, D., Yamamoto, M., A parabolic shape optimization problem, Ann. Acad. Rom. Sci.Ser. Math. Appl., 12(2020), 312-328.

Tiba, D., Zalinescu, C., On the necessity of some constraint quali fication conditions in convex programming, J. Convex Anal., 11(2004), 95-110.

Zolesio, J.-P., Identi fication de Domaines par Deformation, These, Univ. of Nice, France,1979.

Downloads

Published

2021-03-30

How to Cite

TIBA, D. (2021). Applications of implicit parametrizations. Studia Universitatis Babeș-Bolyai Mathematica, 66(1), 5–15. https://doi.org/10.24193/subbmath.2021.1.01

Issue

Section

Articles

Similar Articles

<< < 7 8 9 10 11 12 13 14 15 16 > >> 

You may also start an advanced similarity search for this article.