Antifungal activity of lactic acid bacteria against Aspergillus niger and Fusarium oxysporum
DOI:
https://doi.org/10.24193/subbbiol.2025.2.06Keywords:
antifungal activity, biopreservation, lactic acid bacteria, MALDI-Tof, thin layer chromatographyAbstract
Many fungi are viewed as contaminants in nearly all food products. This contamination can be affected by various pollutants, including natural toxins. Among these toxins are mycotoxins produced by mold pathogens that affect plants. Combating these pathogens is essential in the agri-food industry, and the development of innovative strategies like biopreservation presents a promising solution. This study aims to isolate lactic acid bacteria (LAB) from fermented cow’s milk and examine their antifungal properties against Aspergillus niger and Fusarium oxysporum. The LAB were identified through morphological, biochemical, and MALDI-Tof analyses. Five strains of LAB sourced from fermented cow’s milk were evaluated for their antifungal activity using both the streak method and the double-layer method. The LAB isolates displayed inhibitory effects against Aspergillus niger and Fusarium oxysporum, showing a significant reduction in mean fungal diameter in comparison to the control, with these isolates categorizing under the Lactobacillus genus. The Fusarium oxysporum strain exhibited greater sensitivity to LAB compared to the Aspergillus niger strain. No decrease in antifungal activity was noted after subjecting the inhibitory metabolites in LAB supernatants to temperature treatments (4℃, 45℃, 60℃, and 100℃). After treatment with the proteolytic enzyme (chymotrypsin), no alterations in inhibition zones were observed. Inhibition was noted at an acidic pH for all strains. Investigating the nature of the inhibitory metabolites of LAB through thin-layer chromatography (TLC) and following their characterization allowed us to conclude that the antifungal properties of this LAB are attributed to the production of lactic and acetic acids.
Article history: Received 15 January 2025; Revised 28 October 2025;
Accepted 28 October 2025; Available online 20 December 2025
References
Abdulmumeen, H. A., Risikat, A. N., & Sururah, A. R. (2012). Food: Its preservatives, additives and applications. International J. Chem. Biochem Sciences, 1, 36-47. https://doi.org/10.13140/2.1.1623.5208
Amenu, D., & Bacha, K. (2023). Probiotic potential and safety analysis of lactic acid bacteria isolated from Ethiopian traditional fermented foods and beverages. Ann. Microbiol., 73(1), 37. https://doi.org/10.1186/s13213-023-01740-9
Avila, M., Garde, S., Medina, M., & Nunez, M. (2005). Effect of milk inoculation with bacteriocin producing lactic acid bacteria on a Lactobacillus helveticus adjunct cheese culture. J. Food Prot. 68, 1023-1033. https://doi.org/10.4315/0362-028x-68.5.1026
Barefoot, S.F, & Klaenhammer, T.R. (1983). Detection and activity of lactacin B, a bacteriocin produced by Lactobacillus acidophilus. Appl. Environ. Microbiol., 45(6),1808- 1815. https://doi.org/10.1128/aem.45.6.1808-1815.1983
Batish, V.K., Roy, U., Lal, R., & Grower, S. (1997). Antifungal attributes of lactic acid bacteria - a review. Crit. Rev. Biotechnol., 17(3), 209-225. https://doi.org/10.3109/07388559709146614
Benthin, S., & Villadsen, J. (1995). Different inhibition of Lactobacillus delbruckii subsp. bulgaricus by D- and L- lactic acid: effects on lag phase, gowth rate and cell yield. J. Appl. Bacteriol., 78, 647-654. https://doi.org/10.1111/j.1365-2672.1995.tb03111.x
Bhatnagar, D., Payne, G.A., Cleveland, T.E. & Robens, J.F. (2004). Mycotoxins: current issue in USA. In H. Barug, H.P. van Egmond, R. Lopez-Garcia, W.A. van Osenbruggen and A. Visconti (eds). Meeting the mycotoxin menace, pp. 17–47. Wageningen, the Netherlands, Wageningen Academic Publisher.
Bourdichon, F., Casaregola, S., Farrokh, C., Frisvad, J.C., Gerds, M.L., Hammes, W.P., Harnett, J., Huys, G., Laulund, S., Ouwehand, A., Powell, I.B., Prajapati, J.B., Seto, Y., Ter Schure, E., Van Boven, A., Vankerckhoven, V., Zgoda, A., Tuijtelaars, S., Hansen, E.B. (2012). Food fermentations: microorganisms with technological beneficial use. Int. J. Food Microbiol., 2012 Mar 15;154(3), 87-97. https://doi.org/10.1016/j.ijfoodmicro.2011.12.030
Calpice, E., & Fitzgerald, G.F. (1999). Food fermentation: role of microorganisms in food production and preservation. Int. J. Food Microbiol., 50(1-2), 131-149. https://doi.org/10.1016/s0168-1605(99)00082-3
Carr, F.J., Chill, D., & Maida, N. (2002), The lactic acid bacteria: a literature survey, Crit. Rev. Microbiol., 28(4), 281-370. https://doi.org/10.1080/1040-840291046759
Castegnaro, M., Pfolhl-Leszkowicz, A. (2002) Les mycotoxines: contaminants omniprésents dans l’alimentation animale et humaine. Moll. & Moll. (Eds). La sécurité alimentaire du consommateur. Lavoisier, Tec doc.
Dalie, D. K. D., Deschamps, A.M., Atanasova-Penichon, V., & Richard-Forget. F. (2010). Potential of Pediococcus pentosaceus (L006) isolated from maize leaf to suppress fumonisin-producing fungal growth. J. Food Prot., 73(6), 1129-1137. https://doi.org/10.4315/0362-028x-73.6.1129
de Alcântara, N. E., Castro, J.S.M., Tavares Filho, E.R., Pagani, M.M., da Cruz, A.G., Mársico, E. T., & Esmerino, É. A. (2022). Use of stabilizers in UHT milk: technological and regulatory aspects. J. Engineer. Exact Sci., 8(8), 14846–01e. https://doi.org/10.18540/jcecvl8iss8pp14846-01e
Elidrissi, A., Ezzaky, Y., Boussif, K., & Achemchem, F. (2023). Isolation and characterization of bioprotective lactic acid bacteria from Moroccan fish and seafood. Braz. J. Microbiol., 54(3), 2117-2127. https://doi.org/10.1007/s42770-023-01077-0
Erem, E., & Kilic‐Akyilmaz, M. (2024). The role of fermentation with lactic acid bacteria in quality and health effects of plant‐based dairy analogues. Compr. Rev. Food Sci. Food Saf., 23(4), e13402. https://doi.org/10.1111/1541-4337.13402
Fennema, O. (1966). An over-all view of low temperature food preservation. Cryobiology, 3(3), 197-213. https://doi.org/10.1016/S0011-2240(66)80013-5
Gerbaldo, G.A, Barberisa, C, Pascuala, L, Dalceroa, A, & Barberisa, L. (2012), Antifungal activity of two Lactobacillus strains with potential probiotic properties, FEMS Microbiol. Lett., 332, 27-33. https://doi.org/10.1111/j.1574-6968.2012.02570.x
Goulas, A. E. & Kontominas, M. G. (2007). Effect of modified atmosphere packaging and vacuum packaging on the shelf-life of refrigerated chub mackerel (Scomber japonicus): biochemical and sensory attributes. Eur. Food Res. Technol., 224, 545–553. https://doi.org/10.1007/s00217-006-0316-y
Guo, J., Brosnan, B., Furey, A., Arendt, E., Murphy, P., & Coffey, A. (2012). Antifungal activity of Lactobacillus against Microsporum canis, Microsporum gypseum and Epidermophyton floccosum, Bioeng. Bugs, 3, 2, 104-113. https://doi.org/10.4161/bbug.19624
Hansal, N., Benmchernene, Z., & Mebrouk, K. (2024). Antibacterial activity of Leuconostoc mesonteroides isolated from raw goat milk. J. Appl. Biol. Sci., 18(1), 14-32. https://doi.org/10.71336/jabs.1261
Heydari, A., & Pessarakli, M. (2010). A review on biological control of fungal plant pathogens using microbial antagonists. J. Biol. Sci., 10(4), 273-290. https://doi.org/10.3923/jbs.2010.273.290
Jaafar, M. H., Xu, P., Mageswaran, U. M., Balasubramaniam, S. D., Solayappan, M., Woon, J. J., The, C.S., Todorov, S.D., Park, Y.H., Liu, G., & Liong, M. T. (2024). Constipation anti-aging effects by dairy-based lactic acid bacteria. J. Anim. Sci. Technol., 66(1), 178-203. https://doi.org/10.5187/jast.2023.e93
Laref, N. (2014). L’étude de l’activité antifongique des lactobacilles et leur effet sur la croissance d’Aspergillus sp. Thèse de doctorat, Université Oran.
Le Bars, J., & Le Bars, P. (1998) Strategy for safe use of fungi and fungal derivatives in food processing in Mycotoxins in Food chain, (Le Bars, J., Galtier, P., eds), Revue Méditerranéene Vétérinaire. 149, 493-500.
Ledenbach, L.H., & Marshall, R.T. (2009). Microbiological spoilage of dairy products. Compendium of the microbiological spoilage of foods and beverages, 41-67.
Lee, K.Y., So, J.S. & Heo, T.R. (2001). Thin layer chromathographic determination of organic acids for rapid identification of Bifidobacteria at genus level. J. Microbiol. Methods, 45(1), 1-6. https://doi.org/10.1016/s0167-7012(01)00214-7
Leyva Salas, M., Mounier, J., Valence, F., Coton, M., Thierry, A., & Coton, E. (2017). Antifungal microbial agents for food biopreservation-A review. Microorganisms, 5(3), 37. https://doi.org/10.3390/microorganisms5030037
Lingbeck, J. M., Cordero, P., O’Bryan, C.A., Johnson, M.G., Ricke, S.C., Crandall, P.G. (2014). Functionality of liquid smoke as an all-natural antimicrobial in food preservation. Meat Sci., 97(2), 197-206. https://doi.org/10.1016/j.meatsci.2014.02.003.
Lrsen, A.G., Vagensen, F.K., & Josephsen, J. (1993). Antimicrobial activity of lactic acid bacteria isolated from sour doughs: purification and characterization of bavaricin A, a bacteriocine produced by Lactobacillus bavaricus MI401. J. Appl. Bacteriol. 75(2), 113-122. https://doi.org/10.1111/j.1365-2672.1993.tb02755.x
Magnusson, J., Ström, K., Roos, S., Sjogren, J., & Schnürer, J. (2003), Broad and complex antifungal activity among environmental isolates of lactic acid bacteria. FEMS Microbiol. Letters, 219, 129-135. https://doi.org/10.1016/S0378-1097(02)01207-7
Mami, A. (2013). Recherche des bacteries lactiques productrices de bactérioicines à large spectre d’action vis à vis des germes impliqués dans les intoxications alimentaires (Doctoral dissertation, Université Mohamed Boudiaf des Sciences et de la Technologie-Mohamed Boudiaf d’Oran).
Nazareth, T.M., Luz, C., Torrijos, R., Quiles, J.M., Luciano, F.B., Mañes, J., & Meca, G. (2019). Potential Application of Lactic Acid Bacteria to Reduce Aflatoxin B1 and Fumonisin B1 Occurrence on Corn Kernels and Corn Ears. Toxins (Basel), 12(1), 21. https://doi.org/10.3390/toxins12010021
Nemati, V., Hashempour-baltork, F., Alizadeh, A. M., & Varzakas, T. (2023). Production of traditional torba yogurt using lactic acid bacteria isolated from fermented vegetables: Microbiological, physicochemical and sensory properties. J. Agric. Food Research, 14, 100850. https://doi.org/10.1016/j.jafr.2023.100850
Prokopov, T., & Tanchev, S. (2007). Methods of food preservation. Food safety: a practical and case study approach, Springer.
Rahman, M. S., & Perera, C. O. (2007). Drying and food preservation. Handbook of food preservation, CRC Press, 421-450.
Riley, M.A. & Wertz, J.E. (2002). Bacteriocins: evolution, ecology, and application. Ann. Rev. Microbiol., 56(1), 117-137. https://doi.org/10.1146/annurev.micro.56.012302.161024
Russell, N. J., & Gould, G.W. (2003). Food preservatives, Springer Science & Business Media.
Sadiq, F.A., Yan, B., Tian, F., Zhao, J., Zhang, H., & Chen, W. (2019). Lactic acid bacteria as antifungal and anti-mycotoxigenic agents: A comprehensive review. Compr. Rev. Food Sci. Food Saf. 18 (5), 1403-1436. https://doi.org/10.1111/1541-4337.12481
Sathe, S.J., Nawani, N. N., Dhakephalkar, P.K., & Kapadnis, B.P.( 2007). Antifungal lactic acid bacteria with potential to prolong shelf-life of fresh vegetables. J. Appl. Microbiol., 103, 2622–2628. https://doi.org/10.1111/j.1365-2672.2007.03525.x
Siedler, S., Balti, R., & Neves, A.R. (2019). Bioprotective mechanisms of lactic acid bacteria against fungal spoilage of food. Curr. Opin. Biotechnol., 56, 138-146. https://doi.org/10.1016/j.copbio.2018.11.015
Steele, J. H. (2000). History, trends, and extent of pasteurization. J. Am. Vet. Med. Assoc., 217(2), 175-178. https://doi.org/10.2460/javma.2000.217.175
Stiles, M. E. (1996). Biopreservation by lactic acid bacteria. Antonie van Leeuwenhoek, 70, 331-345. https://doi.org/10.1007/BF00395940
Sudeepa, E.S., & Bhavini, K. (2020), Review on Lactobacillus fermentum. 6, 3. IJARIIE-ISSN(O)-2395-4396, 719- 726.
Teubeur, M. (1993). L’actic acid bacteria. In rahm. J., Reed., Puhller A., Stadller P (Eds.), Biotechnology , 2Ed., Verlag chemie, Weinheim 1, 325-366.
Wang, H, Yan, Y., Wang, J., Zhang, H., & Qi, W. (2012), Production and characterization of antifungal compounds produced by Lactobacillus plantarum IMAU10014, PLoS ONE, 7, e29452. https://doi.org/10.1371/journal.pone.0029452
Wilson, A.R., Signee, D. & Epton, H.A.S. (2005). Anti-bacterial activity of Lactobacillus plantarum strain SK1 against Listeria monocytogenes due to lactic acid production. J. Appl. Microbiol., 99, 1516-1522. https://doi.org/10.1111/j.1365-2672.2005.02725.x.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Studia Universitatis Babeș-Bolyai Biologia

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.