Community-level physiological profiling of carbon substrate metabolization by microbial communities associated to sediments and water in karstic caves from Romania
DOI:
https://doi.org/10.24193/subbbiol.2025.1.12Keywords:
caves, community-level physiological profile, generalized additive models, microbial communities, organic carbon substratesAbstract
Cave ecosystems comprise specialized microbial communities that play essential roles in biogeochemical cycles; yet their metabolic capabilities and ecological functions are not fully understood. As conventional cultivation techniques provide limited insights into the metabolic capabilities, methods based on direct functionality screening may improve our knowledge of cave microbial activity. In this study, the Community-Level Physiological Profiling (CLPP) based on Biolog® EcoPlate™ approach was applied to assess carbon (C) substrate utilization by microbial communities associated with 36 environamental samples collected from five karstic caves (Cloșani, Ferice, Leșu, Muierilor, and Topolnița) in Romania. Principal Component Analysis (PCA) and Generalized Additive Models (GAMs) statistics were employed to infer the patterns of C substrate metabolization and their environmental drivers. Environmental variables such as sodium (Na) and electrical conductivity (EC) significantly impacted C substrate utilization capabilities as indicated by both PCA and GAM. The latter analysis elucidated non-linear relationships between variables, such as EC, Na, and Mg, and microbial metabolic diversity indices. However, distinct C substrate utilization patterns were detected among sampled sites and chemical types. Unlike moonmilk samples where associated microbial communities appeared as exhibiting low C substrate utilization, the highest activity was shown in cave pool water samples with the associated microbial communities extensively consuming D-galacturonic acid and Tween 80. Conversely, substrates like L-threonine and α-ketobutyric acid showed limited utilization across all cave samples. Average Well Color Development (AWCD) and Shannon diversity indices indicated that microbial communities associated to samples from Cloșani and Muierilor caves demonstrated the highest metabolic diversity. Our findings suggested that metabolic profiling using Biolog® EcoPlate™ method combined with multivariate statistical methods might prove a suitable analysis approach to effectively screen for cave microbial functionality and the probable environmental drivers. Besides, this work distinguishes from similar studies by relying on GAM analysis to predict the environmental factors governing the microbially-mediated organic carbon degradation in subterranean ecosystems.
Article history: Received 28 February 2025; Revised 30 April 2025;
Accepted 18 May 2025; Available online 25 June 2025
References
Adekanmbi, A. A., Shu, X., Zou, Y. & Sizmur, T. (2022). Legacy effect of constant and diurnally oscillating temperatures on soil respiration & microbial community structure. Eur J Soil Sci. 73(6), e13319, https://doi.org/10.1111/ejss.13319
Akbari, A., & Ghoshal, S. (2015). Effects of diurnal temperature variation on microbial community & petroleum hydrocarbon biodegradation in contaminated soils from a sub‐Arctic site. Env. Micro., 17(12), 4916-4928, https://doi.org/10.1111/1462-2920.12846
Amaresan, N., Kumar, K., Venkadesaperumal, G., & Srivathsa, N. C. (2018). Microbial community level physiological profiles of active mud volcano soils in &aman & Nicobar Islands. Nat. Acad. Sci. Lett., 41, 161-164, https://doi.org/10.25083/rbl/25.4/1731.1736
Asif, A., Koner, S., Chen, J. S., Hussain, A., Huang, S. W., Hussain, B., & Hsu, B. M. (2024). Uncovering the microbial community structure & physiological profiles of terrestrial mud volcanoes: a comprehensive metagenomic insight towards their Trichloroethylene biodegradation potentiality. Env. Res., 119457, https://doi.org/10.1016/j.envres.2024.119457
Barton, H. A., and Northup, D. E. (2007). Geomicrobiology in cave environments: past, current and future perspectives. J. Cave Karst Stud., 69(1), 163-178.
Barton, H. A., Giarrizzo, J. G., Suarez, P., Robertson, C. E., Broering, M. J., Banks, E. D., & Venkateswaran, K. (2014). Microbial diversity in a Venezuelan orthoquartzite cave is dominated by the Chloroflexi (Class Ktedonobacterales) and Thaumarchaeota Group I. 1c. Front. Microbiol., 5, 615, https://doi.org/10.3389/fmicb.2014.00615
Bleahu, M., Decu, V., Negrea, S., Pleşa, C., Povară, I., &Viehmann, I. (1976). Caves from Romania. Editura Ştiințifică şi Enciclopedică, Bucharest.
Boer, H., Maaheimo, H., Koivula, A., Penttilä, M., &Richard, P. (2009). Identification in Agrobacterium tumefaciens of the D-galacturonic acid dehydrogenase gene. App. Microbio. Biotech., 86(3), 901-909. https://doi.org/10.1007/s00253-009-2333-9
Bogdan D.F., Baricz A.I., Chiciudean I., Bulzu P.A., Cristea A., Năstase-Bucur R., Levei E.A., Cadar O., Sitar C., Banciu H.L. & Moldovan O.T., (2023), Diversity, distribution and organic substrates preferences of microbial communities of a low anthropic activity cave in North-Western Romania. Front. Microbiol. 14:962452, https://doi.org/10.3389/fmicb.2023.962452
Boteva, S., Stanachkova, M., Traykov, I., Angelova, B., & Kenarova, A. (2024). Bacterial functional responses to environmental variability: a case study in three distinct mountain lakes within a single watershed. Biotechnol. Biotechnol. Equip., 38(1), 2418549, https://doi.org/10.1080/13102818.2024.2418549
Bücs, S. L., Jére, C., Csősz, I., Barti, L., &Szodoray-Parády, F. (2012). Distribution and conservation status of cave-dwelling bats in the Romanian Western Carpathians. Vespertilio 16, 97–113.
Cacchio, P., &Del Gallo, M. (2019). A novel approach to isolation and screening of calcifying bacteria for biotechnological applications. Geosci., 9(11), 479, https://doi.org/10.3390/geosciences9110479
Cristea, A., Andrei, A. Ș., Baricz, A., Muntean, V., Banciu, H. L. (2014): Rapid assessment of carbon substrate utilization in the epilimnion of meromictic Ursu Lake (Sovata, Romania) by the Biolog Eco Plate™ approach. Stud. Univ. Babes-Bolyai, Biol. 59(1): 41-53
D’Angeli, I. M., Ghezzi, D., Leuko, S., Firrincieli, A., Parise, M., Fiorucci, A., & Cappelletti, M. (2019). Geomicrobiology of a seawater-influenced active sulfuric acid cave. PLoS One, 14(8), e0220706, https://doi.org/10.1371/journal.pone.0220706.
De Mandal, S., Chatterjee, R., &Kumar, N. S. (2017). Dominant bacterial phyla in caves and their predicted functional roles in C and N cycle. BMC Microbio., 17:90. https://doi.org/10.1186/s12866-017-1002-x
Dencker, T. S., Pecuchet, L., Beukhof, E., Richardson, K., Payne, M. R., & Lindegren, M. (2017). Temporal and spatial differences between taxonomic and trait biodiversity in a large marine ecosystem: Causes and consequences. PLoS One, 12(12), e0189731, https://doi.org/10.1371/journal.pone.0189731
Epure, L., Meleg, I. N., Munteanu, C. M., Roban, R. D., & Moldovan, O. T. (2014). Bacterial and fungal diversity of quaternary cave sediment deposits. Geomicrobio. J. 31, 116–127, https://doi.org/10.1080/01490451.2013.815292
Feigl, V., Ujaczki, É., Vaszita, E., &Molnár, M. (2017). Influence of red mud on soil microbial communities: Application and comprehensive evaluation of the Biolog® EcoPlate™ approach as a tool in soil microbiological studies. Sci. Tot. Env., 595, 903-911, https://doi.org/10.1016/j.scitotenv.2017.03.266
Garland, J. L. (1997). Analysis and interpretation of community-level physiological profiles in microbial ecology. FEMS Microbio. Eco., 24(4), 289-300, https://doi.org/10.1111/j.1574-6941.1997.tb00446.x
Ghaly, T. M., Focardi, A., Elbourne, L. D. H., et al. (2023). Stratified microbial communities in Australia’s only anchialine cave are taxonomically novel and drive chemotrophic energy production via coupled nitrogen-sulphur cycling. Microbiome, 11, 190, https://doi.org/10.1186/s40168-023-01633-8
Gryta, A., Frąc, M., &Oszust, K. (2014). The application of the Biolog EcoPlate approach in ecotoxicological evaluation of dairy sewage sludge. Applied biochemistry and biotechnology, 174, 1434-1443, https://doi.org/10.1007/s12010-014-1131-8
Gryta, A., Frąc, M., &Oszust, K. (2014). The application of the Biolog EcoPlate approach in ecotoxicological evaluation of dairy sewage sludge. App. Biochem. Biotech., 174, 1434-1443, https://doi.org/10.1007/s12010-014-1131-8
Haegeman, B., Hamelin, J., Moriarty, J., Neal, P., Dushoff, J., &Weitz, J. S. (2013). Robust estimation of microbial diversity in theory and in practice. The ISME journal, 7(6), 1092-1101, https://doi.org.10.1038/ismej.2013.10
Inskeep, W. P., Jay, Z. J., Tringe, S. G., Herrgård, M. J., Rusch, D. B., &YNP Metagenome Project Steering Committee and Working Group Members. (2013). The YNP metagenome project: environmental parameters responsible for microbial distribution in the Yellowstone geothermal ecosystem. Front. Microbiol., 4, 67, https://doi.org.10.3389/fmicb.2013.00067
Iţcuş, C., Pascu, M. D., Brad, T., Perşoiu, A., &Purcarea, C. (2016). Diversity of cultured bacteria from the perennial ice block of Scarisoara Ice Cave, Romania. Int. J. Speleo., 45(1), 9, http://dx.doi.org/10.5038/1827-806X.45.1.1948
Jałowiecki, Ł., Chojniak, J. M., Dorgeloh, E., Hegedusova, B., Ejhed, H., Magnér, J., &Płaza, G. A. (2016). Microbial community profiles in wastewaters from onsite wastewater treatment systems technology. PloS one, 11(1), e0147725, https://doi.org/10.1371/journal.pone.0147725
Jiang, Y., Wang, Y., Huang, Z., Zheng, B., Wen, Y., &Liu, G. (2023). Investigation of phytoplankton community structure and formation mechanism: a case study of Lake Longhu in Jinjiang. Front. Microbiol., 14, 1267299, https://doi.org.10.3389/fmicb.2023.1267299
Jin, Q., Black, A., Kales, S. N., Vattem, D., Ruiz-Canela, M., &Sotos-Prieto, M. (2019). Metabolomics and Microbiomes as Potential Tools to Evaluate the Effects of the Mediterranean Diet. Nutrients, 11(1), 207, https://doi.org/10.3390/nu11010207
Jones, D. (2015). 2. Methods for Characterizing Microbial Communities in Caves &Karst: A Review. In A. Summers Engel (Ed.), Microbial Life of Cave Systems (pp. 23-46). Berlin, München, Boston: De Gruyter, https://doi.org/10.1515/9783110339888-004
Koner, S., Chen, J. S., Hsu, B. M., Rathod, J., Huang, S. W., Chien, H. Y., ... &Chan, M. W. (2022). Depth-resolved microbial diversity and functional profiles of trichloroethylene-contaminated soils for Biolog EcoPlate-based biostimulation strategy. J. Hazard. Mater., 424, 127266, https://doi.org/10.1016/j.jhazmat.2021.127266
Koner, S., Chen, J. S., Hsu, B. M., Tan, C. W., Fan, C. W., Chen, T. H., &Nagarajan, V. (2021). Assessment of Carbon substrate catabolism pattern and functional metabolic pathway for Microbiota of Limestone Caves. Microorganisms, 9, https://doi.org/10.3390/microorganisms9081789
Li, H., Xu, Z., Yan, Q., Yang, S., Van Nostrand, J. D., Wang, Z., &Deng, Y. (2018). Soil microbial beta-diversity is linked with compositional variation in aboveground plant biomass in a semi-arid grassland. PLANTSOIL, 423, 465-480, https://doi.org/10.1007/s11104-017-3524-2
Li, X., Liu, L., Zhu, Y., Zhu, T., Wu, X., &Yang, D. (2021). Microbial community structure and its driving environmental factors in black carp (Mylopharyngodon piceus) aquaculture pond. Water, 13(21), 3089, https://doi.org/10.3390/w13213089
Liu, F., Giometto, A., &Wu, M. (2021). Microfluidic and mathematical modeling of aquatic microbial communities. Anal. Bioanal. Chem., 413, 2331–2344, https://doi.org/10.1007/s00216-020-03085-7
Liu, L., Li, A., Zhu, L., Xue, S., Li, J., Zhang, C., &Mao, Y. (2023). The Application of the Generalized Additive Model to Represent Macrobenthos near Xiaoqing Estuary, Laizhou Bay. Biology, 12(8), 1146, https://doi.org/10.3390/biology12081146
Martin-Pozas, T., Gonzalez-Pimentel, J. L., Jurado, V., Cuezva, S., Dominguez-Moñino, I., Fernandez-Cortes, A., &Saiz-Jimenez, C. (2020). Microbial activity in subterranean ecosystems: Recent advances. Appl. Sci., 10(22), 8130, https://doi.org/10.3390/app10228130
Melita, M., Amalfitano, S., Preziosi, E., Ghergo, S., Frollini, E., Parrone, D., &Zoppini, A. (2023). Redox conditions and a moderate anthropogenic impairment of groundwater quality reflected on the microbial functional traits in a volcanic aquifer. Aquat. Sci., 85(1), 3, https://doi.org/10.1007/s00027-022-00899-8
Meyer, N. R., Parada, A. E., Kapili, B. J., Fortney, J. L., &Dekas, A. E. (2022). Rates and physico-chemical drivers of microbial anabolic activity in deep‐sea sediments and implications for deep time. Environ. Microbiol., 24(11), 5188-5201, https://doi.org/10.1111/1462-2920.16183
Moldovan, O. T., Carrell, A. A., Bulzu, P. A., Levei, E., Bucur, R., Sitar, C., &Podar, M. (2023). The gut microbiome mediates adaptation to scarce food in Coleoptera. Environ. Microbiol., 18(1), 80, https://doi.org/10.1186/s40793-023-00537-2
Moretti, G., Matteucci, F., Ercole, C., Vegliò, F., &Del Gallo, M. (2016). Microbial community distribution and genetic analysis in a sludge active treatment for a complex industrial wastewater: A study using microbiological and molecular analysis and principal component analysis. Ann. Microbiol., 66, 397-405, https://doi.org/10.1007/s13213-015-1122-1
Morita, N., Toma, Y., &Ueno, H. (2024). Microbial diversity and community structure in co-composted bamboo powder and tea leaves based on carbon substrate utilization patterns of the BIOLOG EcoPlate method. Adv. Bamboo Sci., 8, 100101, https://doi.org/10.1016/j.bamboo.2024.100101
Musat, N., Musat, F., Weber, P. K., &Pett-Ridge, J. (2016). Tracking microbial interactions with NanoSIMS. COBIOT, 41, 114–121, https://doi.org/10.1016/j.copbio.2016.06.007
Nyyssönen, M., Hultman, J., Ahonen, L., Kukkonen, I., Paulin, L., Laine, P., &Auvinen, P. (2014). Taxonomically and functionally diverse microbial communities in deep crystalline rocks of the Fennoscandian shield. The ISME journal, 8(1), 126-138, https://doi.org/10.1038/ismej.2013.125
Obusan, M. C. M., Castro, A. E., Villanueva, R. M. D., Isagan, M. D. E., Caras, J. A. A., &Simbahan, J. F. (2023). Physico-Chemical Quality and Physiological Profiles of Microbial Communities in Freshwater Systems of Mega Manila, Philippines. Data, 8(6), 103, https://doi.org/10.3390/data8060103
O'Connor, B. R., Fernández-Martínez, M. Á., Léveillé, R. J., & Whyte, L. G. (2021). Taxonomic characterization and microbial activity determination of cold-adapted microbial communities in Lava Tube Ice Caves from Lava Beds National Monument, a high-fidelity Mars analogue environment. Astrobio., 21(5), 613-627, https://doi.org/10.1089/ast.2020.2327
Park, S., Cho, Y. J., Jung, D. Y., Jo, K. N., Lee, E. J., &Lee, J. S. (2020). Microbial diversity in moonmilk of Baeg-nyong Cave, Korean CZO. Front. Microbiol., 11, 613, https://doi.org/10.3389/fmicb.2020.00613
Pašić, L., Kovče, B., Sket, B., and Herzog-Velikonja, B. (2009). Diversity of microbial communities colonizing the walls of a Karstic cave in Slovenia. FEMS Microbio. Eco., 71(1), 50-60, https://doi.org/10.1111/j.1574-6941.2009.00789.x
Parkkinen, T., Boer, H., Jänis, J., Andberg, M., Penttilä, M., Koivula, A., & Rouvinen, J. (2011). Crystal structure of uronate dehydrogenase from Agrobacterium tumefaciens. JBC, 286(31), 27294-27300. https://doi.org/10.1074/jbc.m111.254854
Patsch, D., van Vliet, S., Marcantini, L. G., &Johnson, D. R. (2018). Generality of associations between biological richness and the rates of metabolic processes across microbial communities. Environ. Microbiol., 20(12), 4356-4368, https://doi.org/10.1111/1462-2920.14352
Paula, C. C. P. D., Bichuette, M. E., &Seleghim, M. H. R. (2020). Nutrient availability in tropical caves influences the dynamics of microbial biomass. MicrobiologyOpen, 9(7), e1044, https://doi.org/10.1002/mbo3.1044
Pedersen, K. (2012). Subterranean microbial populations metabolize hydrogen and acetate under in situ conditions in granitic groundwater at 450 m depth in the Äspö Hard Rock Laboratory, Sweden. FEMS Microbio. Eco., 81(1), 217–229. https://doi.org/10.1111/j.1574-6941.2012.01370.x
Pop, C.-E., Fendrihan, S., Crăciun, N., Vasilighean, G., Chifor, D. E., Topârceanu, F., Florea, A., Mihăilescu, D. F., &Mernea, M. (2025). Antarctic Soil and Viable Microbiota After Long-Term Storage at Constant −20 °C. Biology, 14(3), 222. https://doi.org/10.3390/biology14030222
Power, J. F., Carere, C. R., Lee, C. K., Wakerley, G. L., Evans, D. W., Button, M., &Stott, M. B. (2018). Microbial biogeography of 925 geothermal springs in New Zealand. Nature communications, 9(1), 2876, https://doi.org/10.1038/s41467-018-05020-y
Ramezani, M., MacIntosh, S., &White, R. L. (1999). Utilization of d-amino acids by Fusobacterium nucleatum and Fusobacterium varium. Amino Acids, 17(2), 185-193. https://doi.org/10.1007/bf01361881
Rutgers, M., Wouterse, M., Drost, S. M., Breure, A. M., Mulder, C., Stone, D., &Bloem, J. (2016). Monitoring soil bacteria with community-level physiological profiles using Biolog™ Ecoplates in the Netherlands and Europe. Appl. Soil Ecol., 97, 23-35, https://doi.org/10.1016/j.apsoil.2015.06.007
Shaw, A. K., Halpern, A. L., Beeson, K., Tran, B., Venter, J. C., &Martiny, J. B. (2008). It's all relative: ranking the diversity of aquatic bacterial communities. Environ. Microbiol, 10(9), 2200-2210, https://doi.org.10.1111/j.1462-2920.2008.01626.x
Shen, J., Smith, A. C., Barnett, M. J., Morgan, A., & Wynn, P. M. (2022). Distinct microbial communities in the soils, waters, and speleothems of a hyperalkaline cave system. Journal of Geophysical Research: Biogeosciences, 127(9), e2022JG006866, https://doi.org/10.3390/microorganisms9081789
Simpson, G. L., (2024). gratia: An R package for exploring generalized additive models. J Open Source Software, 9(104), 6962, https://doi.org/10.21105/joss.06962
Sofo, A., & Ricciuti, P. (2019). A standardized method for estimating the functional diversity of soil bacterial community by Biolog® EcoPlatesTM assay—the case study of a sustainable olive orchard. App. Sci., 9(19), 4035, https://doi.org/10.3390/app9194035
Stefanowicz, A. (2006). The Biolog plates technique as a tool in ecological studies of microbial communities. Pol. J. Environ. Stud., 15(5).
Tang, Z., Sun, X., Luo, Z., He, N., & Sun, O. J. (2018). Effects of temperature, soil substrate, and microbial community on carbon mineralization across three climatically contrasting forest sites. Eco. Evo., 8(2), 879-891, https://doi.org/10.1002/ece3.3708
Teng, Z., Fan, W., Wang, H., Cao, X., & Xu, X. (2020). Monitoring soil microorganisms with community-level physiological profiles using Biolog EcoPlates™ in Chaohu lakeside wetland, East China. Eurasian J. Soil Sci., 53, 1142-1153, https://doi.org/10.1134/S1064229320080141
Theodorescu, M., Bucur, R., Bulzu, PA., Faur L., Levei EA., Mirea IC, Cadar O., Ferreira R, Souza-Silva M., & Moldovan OT. (2023). Environmental Drivers of the Moonmilk Microbiome Diversity in Some Temperate and Tropical Caves. Microb Ecol, 86,2847-2857, https://doi.org/10.1007/s00248-023-02286-8
Thompson, H. F., & Gutierrez, T. (2021). Detection of hydrocarbon-degrading bacteria on deepwater corals of the northeast Atlantic using CARD-FISH. J. Microbiol. Methods., 187, 106277, https://doi.org/10.1016/j.mimet.2021.106277
Tobias-Hünefeldt, S. P., Wing, S. R., Baltar, F., & Morales, S. E. (2021). Changes in microbial community phylogeny and metabolic activity along the water column uncouple at near sediment aphotic layers in fjords. Sci. Rep., 11(1), 19303, https://doi.org/10.1038/s41598-021-98519-2
Wu, X., Holmfeldt, K., Hubalek, V., Lundin, D., Åström, M., Bertilsson, S., & Dopson, M. (2016). Microbial metagenomes from three aquifers in the Fennoscandian shield terrestrial deep biosphere reveal metabolic partitioning among populations. The ISME Journal, 10(5), 1192-1203, https://doi.org/10.1038/ismej.2015.185
Yu, K., Yi, S., Li, B., et al. (2019). An integrated meta-omics approach reveals substrates involved in synergistic interactions in a bisphenol A (BPA)-degrading microbial community. Microbiome, 7(1), 16. https://doi.org/10.1186/s40168-019-0634-5
Yu, Z., Yang, J., Amalfitano, S., Yu, X., & Liu, L. (2014). Effects of water stratification and mixing on microbial community structure in a subtropical deep reservoir. Sci. Rep., 4(1), 5821, https://doi.org/10.1038/srep05821
Yun, Y., Cheng, X., Wang, W., & Wang, H. (2018). Seasonal variation of bacterial community and their functional diversity in drip water from a karst cave. Chinese Science Bulletin, 63(36), 3932-3944, https://doi.org/10.1360/N972018-00627
Zak, J. C., Willig, M. R., Moorhead, D. L., & Wildman, H. G. (1994). Functional diversity of microbial communities: a quantitative approach. Soil Biol. Biochem., 26(9), 1101-1108, https://doi.org/10.1016/0038-0717(94)90131-7
Zhang, P., Cui, Z., Guo, M., & Xi, R. (2020). Characteristics of the soil microbial community in the forestland of Camellia oleifera. Peer J 8: e9117, https://doi.org.10.7717/peerj.9117
Zheng, Y., & Gong, X. (2019). Niche differentiation rather than biogeography shapes the diversity and composition of microbiome of Cycas panzhihuaensis. Microbiome, 7, 1-19, https://doi.org/10.1186/s40168-019-0770-y
Zoltan, L., & Szántó, L. (2003). Bats of the Carpathian Region. Acta Chiropt. 5, 155–160. https://doi.org/10.3161/001.005.0115
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Studia Universitatis Babeș-Bolyai Biologia

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.