Genetic variation of Lissotriton montandoni from the eastern part of the Slovak Carpathians

Authors

  • Daniel MIHÁLIK National Agricultural and Food Center, Research Institute of Plant Production, Bratislavská cesta 122, Slovakia; Faculty of Natural Sciences, Department of Biotechnology, University of Ss. Cyril and Methodius in Trnava, Trnava, Slovakia. https://orcid.org/0000-0002-3719-8634
  • Milan HAVIAR University of Žilina, Institute of High Mountain Biology, Slovakia.
  • Katarína ONDREIČKOVÁ National Agricultural and Food Center, Research Institute of Plant Production, Bratislavská cesta 122, Slovakia. https://orcid.org/0000-0002-6063-6583
  • Marián JANIGA University of Žilina, Institute of High Mountain Biology, Slovakia.
  • Ján KRAIC National Agricultural and Food Center, Research Institute of Plant Production, Bratislavská cesta 122, Slovakia; Faculty of Natural Sciences, Department of Biotechnology, University of Ss. Cyril and Methodius in Trnava, Trnava, Slovakia. ✉Corresponding author, E-mail: jan.kraic@ucm.sk https://orcid.org/0000-0003-1551-1295

DOI:

https://doi.org/10.24193/subbbiol.2025.2.01

Keywords:

Carpathian Newt, Eastern Carpathians, genetic diversity, microsatellite

Abstract

This study investigated the extent of genetic variation in Lissotriton montandoni individuals collected from three locations in the eastern Slovak Carpathians using microsatellite DNA markers. The genetic characteristics of these microsatellite loci were confirmed to be suitable for molecular genetic studies in L. montandoni, as indicated by high polymorphic information content values. Furthermore, a high level of genetic variation was detected in this endemic species of amphibian. The fixation index values suggested minimal differentiation among the three analyzed subpopulations, with only 1% of the total genetic variation occurring between subpopulations, 3% between individuals, and 96% within individuals. The presence of a high number of alleles at the same chromosomal loci contributes to genetic variation across the entire population, which is beneficial and essential for the adaptation of both individuals and the population as a whole to current and future environmental changes.

Article history: Received 25 April 2025; Revised 25 August 2025;
Accepted 25 August 2025; Available online 20 December 2025

References

Gherghel, I., Strugariu, A., Ambrosặ, I.-M. & Zamfirescu, Ş.R. (2012). Updated distribution of hybrids between Lissotriton vulgaris and Lissotriton montandoni (Amphibia: Caudata: Salamandridae) in Romania. Acta Herpetol. 7, 49-55. https://doi.org/10.13128/Acta_Herpetol-10224

Hammer, Ø., Harper, D.A.T. & Ryan, P.D. (2001). PAST: Paleontological Statistics Software Package for education and data analysis. Palaeontol. Electron. 4, 1-9.

Johanet, A., Picard, D., Garner, T.W.J., Dawson, D.A., Morales-Hojas, R., Jehle, R., Peltier, D. & Lemaire, C. (2009). Characterization of microsatellite loci in two closely related Lissotriton newt species. Conserv. Genet. 10, 1903-1906. https://doi.org/10.1007/s10592-009-9850-z

Kalinowski, S.T., Taper, M.L. & Marshall, T.C. (2007). Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Mol. Ecol. 16, 1099-1106. https://doi.org/10.1111/j.1365-294X.2007.03089.x

Kniha, D., Janiga, M. & Straško, B. (2013). Ecomorphology of Lissotriton montandoni from the Eastern and Western Carpathians. Oecol. Mont. 22, 1-4.

Kotlík, P. & Zavadil, V. (1999). Natural hybrids between the newts Triturus montandoni and T. vulgaris: Morphological and allozyme data evidence of recombination between parental genomes. Folia Zool. 48, 211-218.

Landguth, E.L., Fedy, B.C., Oyler-McCance, S.J., Garey, A.L., Emel, S.L., Mumma, M., Wagner, H.H., Fortin, M.-J. & Cushman, S.A. (2011). Effects of sample size, number of markers, and allelic richness on the detecion of spatial genetic pattern. Mol. Ecol. Res. 12, 276-284. https://doi.org/10.1111/j.1755-0998.2011.03077.x

Nadachowska, K., Flis, I. & Babik, W. (2010). Characterization of microsatellite loci in the Carpathian newt (Lissotriton montandoni). Herpetol. J. 20, 107-110.

Peakall, R. & Smouse, P.E. (2012): GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research – an update. Bioinformatics 28, 2537-2539. https://doi.org/10.1093/bioinformatics/bts460

Zieliński, P., Dudek, K., Stuglik, M.T., Liana, M. & Babik, W. (2014). Single nucleotide polymorphisms reveal genetic structuring of the Carpathian Newt and provide evidence of interspecific gene flow in the nuclear genome. PLoS ONE 9, e97431. https://doi.org/10.1371/journal.pone.0097431

Zieliński, P., Nadachowska-Brzyska, K., Wielstra, B., Szkotak, R., Covaciu-Marcov, S.D., Cogălniceanu, D. & Babik, W. (2013). No evidence for nuclear introgression despite complete mtDNA replacement in the Carpathian newt (Lissotriton montandoni). Mol. Ecol. 22, 1884-1903. https://doi.org/10.1111/mec.12225.

Downloads

Published

2025-12-20

How to Cite

MIHÁLIK, D., HAVIAR, M., ONDREIČKOVÁ, K., JANIGA, M., & KRAIC, J. (2025). Genetic variation of Lissotriton montandoni from the eastern part of the Slovak Carpathians. Studia Universitatis Babeș-Bolyai Biologia, 70(2), 5–13. https://doi.org/10.24193/subbbiol.2025.2.01

Issue

Section

Articles

Similar Articles

1 2 3 4 5 6 > >> 

You may also start an advanced similarity search for this article.