MΦ macrophage – N0 neutrophil dialogue in the presence of TNF-α affects the endothelium

Authors

  • Sergiu-Marian VATAMANU Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babeș-Bolyai University, 400084 Cluj-Napoca, Romania. ✉Corresponding author, E-mail: sergiu.marian.vatamanu@stud.ubbcluj.ro https://orcid.org/0000-0001-7853-190X
  • Monica ȚUCUREANU Institute of Cellular Biology and Pathology “Nicolae Simionescu”, 050568 Bucharest, Romania https://orcid.org/0000-0001-8510-8122
  • Andreea MIHĂILĂ Institute of Cellular Biology and Pathology “Nicolae Simionescu”, 050568 Bucharest, Romania https://orcid.org/0000-0002-4709-7124
  • Elena BUTOI Institute of Cellular Biology and Pathology “Nicolae Simionescu”, 050568 Bucharest, Romania https://orcid.org/0000-0001-5748-5641
  • Anca FARKAS Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babeș-Bolyai University, 400084 Cluj-Napoca, Romania; Centre for Systems Biology, Biodiversity and Bioresources, Babeș-Bolyai University, 400006 Cluj-Napoca, Romania. https://orcid.org/0000-0003-0985-1461

DOI:

https://doi.org/10.24193/subbbiol.2025.1.14

Keywords:

atherosclerosis, endothelial cells, macrophages, neutrophils, TNF-α

Abstract

Tumor necrosis factor-alpha (TNF-α) plays a pivotal role in the bi-directional dialogue between macrophages and neutrophils during the pre- and post- lesional stages of atherogenesis. This pro-inflammatory cytokine orchestrates a complex interplay between these immune cells, leading to the activation and recruitment of additional leukocytes, and the modulation of endothelial cell function, which collectively drive plaque formation and progression. Elevated levels of TNF-α result in the upregulation of adhesion molecules on the surface of endothelial cells. The cross-talk between macrophages and neutrophils, mediated by TNF-α, also leads to the release of soluble factors that have profound effects on the endothelium. Notably, these factors induce endothelial cell apoptosis via mechanisms involving caspase-3 activation, further contributing to the dysfunction and eventual denudation of the endothelial layer, a hallmark of atherogenesis. At molecular level, TNF-α exposure significantly upregulates the expression of pro-inflammatory mediators in macrophages, including interleukin-1 beta (IL-1β), inducible nitric oxide synthase (iNOS), and the activation of key signaling pathways such as the activation of mitogen-activated protein kinase (MAPK) signaling pathway and stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK). This bi-directional dialogue not only sustains chronic inflammation, but also amplifies the pathogenic processes underlying atherosclerosis, suggesting that targeting TNF-α and its downstream effects could represent a therapeutic strategy to mitigate disease progression. In this study, we aimed at investigating the dialogue between macrophages and unpolarized neutrophils, by assessing the biomarkers leading to cells activation and their differentiation towards a pro-inflammatory phenotype. The effects of TNF-α were explored in the context of inflammation in the arterial wall, for a better understating of atherogenesis. The study results indicated a low intensity inflammatory response, characterized by the up-regulation of key molecules involved in cell signaling for differentiation towards an inflammatory phenotype but not in the production of significant amounts of cytokines and enzymes.

Article history: Received 31 March 2025; Revised 28 May 2025;
Accepted 29 May 2025; Available online 25 June 2025

References

Banerjee S, Nara R, Chakraborty S, Chowdhury D & Haldar S. (2022). Integrin regulated autoimmune disorders: Understanding the role of mechanical force in autoimmunity. Front Cell Dev Biol. 10, 852878. https://doi.org/10.3389/fcell.2022.852878

Biggs TE, Cooke SJ, Barton CH, Harris MP, Saksela K & Mann DA. (1999). Induction of activator protein 1 (AP-1) in macrophages by human immunodeficiency virus type-1 NEF is a cell-type-specific response that requires both hck and MAPK signaling events. J Mol Biol. 290, 21-35. https://doi.org/10.1006/jmbi.1999.2849

Butoi E, Gan AM, Tucureanu MM, Stan D, Macarie RD, Constantinescu C, Calin M, Simionescu M & Manduteanu I. (2016). Cross-talk between macrophages and smooth muscle cells impairs collagen and metalloprotease synthesis and promotes angiogenesis. Biochim Biophys Acta. 1863(7 Pt A), 1568-1578. https://doi.org/10.1016/j.bbamcr.2016.04.001

Butterfield TA, Best TM & Merrick MA. (2006). The dual roles of neutrophils and macrophages in inflammation: A critical balance between tissue damage and repair. J Athl Train. 41(4), 457-465.

Chalise U, Becirovic-Agic M & Lindsey ML. (2021). Neutrophil crosstalk during cardiac wound healing after myocardial infarction. Curr Opin Physiol. 100485. https://doi.org/10.1016/j.cophys.2022.100485

Chan ED, Winston BW, Jarpe MB, Wynes MW & Riches DW. (1997). Preferential activation of the p46 isoform of JNK/SAPK in mouse macrophages by TNF alpha. Proc Natl Acad Sci USA. 94(24), 13169-13174. https://doi.org/10.1073/pnas.94.24.13169

Čejková S, Králová-Lesná I & Poledne R. (2016). Monocyte adhesion to the endothelium is an initial stage of atherosclerosis development. Cor et Vasa. 58(4), e419-e425. https://doi.org/10.1016/j.crvasa.2015.08.002

Deng X, Zhang J, Liu Y, Chen L & Chao Y. (2017) TNF-α regulates the proteolytic degradation of ST6Gal-1 and endothelial cell-cell junctions through upregulating expression of BACE1. Sci Rep. 7, 40256. https://doi.org/10.1038/srep40256

Dérijard B, Hibi M, Wu IH, Barrett T, Su B, Deng T, Karin M & Davis RJ. (1994). JNK1: A protein kinase stimulated by UV light and Ha-Ras that binds and phosphorylates the c-Jun activation domain. Cell 76(6), 1025-1037. https://doi.org/10.1016/0092-8674(94)90380-8

Dimasi D, Sun WY & Bonder CS. (2013). Neutrophil interactions with the vascular endothelium. Int Immunopharmacol. 17(4), 1167-1175. https://doi.org/10.1016/j.intimp.2013.05.034

Farahi L, Sinha SK and Lusis AJ (2021). Roles of macrophages in atherogenesis. Front Pharmacol. 12, 785220. https://doi.org/10.3389/fphar.2021.785220

Feng GJ, Goodridge HS, Harnett MM, Wei XQ, Nikolaev AV, Higson AP & Liew FY. (1999). Extracellular signal-related kinase (ERK) and p38 mitogen-activated protein (MAP) kinases differentially regulate the lipopolysaccharide-mediated induction of inducible nitric oxide synthase and IL-12 in macrophages: Leishmania phosphoglycans subvert macrophage IL-12 production by targeting ERK MAP kinase. J Immunol. 163(12), 6403-6412

Frodermann V & Nahrendorf M. (2017). Neutrophil-macrophage cross-talk in acute myocardial infarction. Eur Heart J. https://doi.org/10.1093/eurheartj/ehw085

Gough P & Myles IA. (2020) Tumor necrosis factor receptors: Pleiotropic signaling complexes and their differential effects. Front Immunol. 11, 585880. https://doi.org/10.3389/fimmu.2020.585880

Hansson GK, Libby P, Tabas I. (2015). Inflammation and plaque vulnerability. J Intern Med. 278(5), 483-493. https://doi.org/10.1111/joim.12406

Hayden MS & Ghosh S. (2014). Regulation of NF-κB by TNF family cytokines. Semin Immunol. 26(3), 253-266. https://doi.org/10.1016/j.smim.2014.05.004

Horckmans M, Ring L, Duchene J, Santovito D, Schloss MJ, Drechsler M, Weber C, Soehnlein O & Steffens S. (2017). Neutrophils orchestrate post-myocardial infarction healing by polarizing macrophages towards a reparative phenotype. Eur Heart J. 38(3), 187-197. https://doi.org/10.1093/eurheartj/ehw002

Hou P, Fang J, Liu Z, Shi Y, Agostini M, Bernassola F, Bove P, Candi E, Rovella V, Sica G, Sun Q, Wang Y, Scimeca M, Federici M, Mauriello A & Melino G. (2023). Macrophage polarization and metabolism in atherosclerosis. Cell Death Dis. 14, 691. https://doi.org/10.1038/s41419-023-06206-z

Iademarco MF, Barks JL & Dean DC. (1995). Regulation of vascular cell adhesion molecule-1 expression by IL-4 and TNF-alpha in cultured endothelial cells. J Clin Invest. 95(1), 264-271. https://doi.org/10.1172/JCI117650

Ikuta S, Kirby JA, Shenton BK, Givan AL & Lennard TW. (1991). Human endothelial cells: effect of TNF-alpha on peripheral blood mononuclear cell adhesion. Immunol. 73(1), 71-76.

James J, Fokin AI, Guschin DY, Wang H, Polesskaya A, Rubtsova SN, Clainche CL, Silberzan P, Gautreau AM & Romero S. Vinculin-Arp2/3 interaction inhibits branched actin assembly to control migration and proliferation. Life Sci Alliance. 8(2), e202402583. https://doi.org/10.26508/lsa.202402583

Kadomoto, S, Izumi K & Mizokami A. (2022). Macrophage polarity and disease control. Int J Mol Sci. 23, 144. https://doi.org/10.3390/ijms23010144

Kavurma MM, Bhindi R, Lowe HC, Chesterman C & Khachigian LM. (2005). Vessel wall apoptosis and atherosclerotic plaque instability. J Thromb Haemost. 3(3), 465-472. https://doi.org/10.1111/j.1538-7836.2005.01120.x

Larrick JW & Wright SC. (1990). Cytotoxic mechanism of tumor necrosis factor-alpha. FASEB J. 4(14), 3215-3223. https://doi.org/10.1096/fasebj.4.14.2172061

Lee K. (2019). M1 and M2 polarization of macrophages: A mini-review. Med Biol Sci Eng. 2, 1-5. https://doi.org/10.30579/mbse.2019.2.1.1

Macarie RD, Tucureanu MM, Ciortan L, Vadana M, Mihaila A, Naie ML, Gan AM, Mandruteanu I & Butoi E. (2025). Molecular mechanisms of communication between innate immune cells and vascular cells in cancer and cardiovascular diseases. SEE J Immunol. 8. https://doi.org/10.3889/seejim.2025.6137

Macarie RD, Vadana M, Ciortan L, Tucureanu MM, Ciobanu A, Vinereanu D, Manduteanu I, Simionescu M & Butoi E. (2018). The expression of MMP-1 and MMP-9 is up-regulated by smooth muscle cells after their cross-talk with macrophages in high glucose conditions. J Cell Mol Med. 22(9), 4366-4376. https://doi.org/10.1111/jcmm.13728

Mihăilă A, Ciortan L, Tucureanu, M, Simionescu M & Butoi E. (2024). Anti-inflammatory neutrophils reprogram macrophages toward a pro-healing phenotype with increased efferocytosis capacity. Cells 13(3), 208. https://doi.org/10.3390/cells13030208

Moore KJ & Tabas I. (2011). Macrophages in the pathogenesis of atherosclerosis. Cell. 145(3), 341-355. https://doi.org/10.1016/j.cell.2011.04.005

Nathan C & Xie QW. (1994). Nitric oxide synthases: Roles, tolls, and controls, Cell. 78(6), 915-918. https://doi.org/10.1016/0092-8674(94)90266-6

Nitsch DD, Ghilardi N, Mühl H, Nitsch C, Brüne B & Pfeilschifter J. (1997). Apoptosis and expression of inducible nitric oxide synthase are mutually exclusive in renal mesangial cells. Am J Pathol. 150(3): 889-900.

Parameswaran N & Patial S. (2010). Tumor necrosis factor-α signaling in macrophages. Crit Rev Eukaryot Gene Expr. 20(2), 87-103. https://doi.org/10.1615/critreveukargeneexpr.v20.i2.10

Persichini T, Cantoni O, Suzuki H & Colasanti M. (2006). Cross-talk between constitutive and inducible NO synthase: An update. Antiox Red Signal. 8, 949-954. https://doi.org/10.1089/ars.2006.8.949

Polunovsky VA, Wendt CH, Ingbar DH, Peterson MS & Bitterman PB. (1994). Induction of endothelial cell apoptosis by TNFα: Modulation by inhibitors of protein synthesis. Exp Cel Res. 214(2), 584-594. https://doi.org/10.1006/excr.1994.1296

Rao KM (2001). MAP kinase activation in macrophages. J Leukoc Biol. 69(1), 3-10. https://doi.org/10.1189/jlb.69.1.3

Schneider CA, Rasband WS & Eliceiri KW. (2012). NIH Image to ImageJ: 25 years of image analysis. Nat Methods. 9, 671–675. https://doi.org/10.1038/nmeth.2089

Takashiba S, Van Dyke TE, Amar S, Murayama Y, Soskolne AW & Shapira L. (1999). Differentiation of monocytes to macrophages primes cells for lipopolysaccharide stimulation via accumulation of cytoplasmic nuclear factor kappaB. Infect Immun. 67(11), 5573-5578. https://doi.org/10.1128/IAI.67.11.5573-5578.1999

Tan J, Virtue S, Norris DM, Conway OJ, Yang M, Bidault G, Gribben C, Lugtu F, Kamzolas I, Krycer JR, Mills RJ, Liang L, Pereira C, Dale M, Shun-Shion AS, Baird HJ, Horscroft JA, Sowton AP, Ma M, Carobbio S, Petsalaki E, Murray AJ, Gershlick DC, Nathan JA, Hudson JE, Vallier L, Fisher-Wellman KH, Frezza C, Vidal-Puig A & Fazakerley DJ. (2024). Limited oxygen in standard cell culture alters metabolism and function of differentiated cells. EMBO J. 43(11), 2127-2165. https://doi.org/10.1038/s44318-024-00084-7 Erratum in: EMBO J. 43(19), 4439. https://doi.org/10.1038/s44318-024-00230-1

Tian M, Yuan YC, Li JY, Gionfriddo MR & Huang RC. (2015). Tumor necrosis factor-α and its role as a mediator in myocardial infarction: A brief review. Chronic Dis Transl Med. 1(1), 18-26. https://doi.org/10.1016/j.cdtm.2015.02.002

Tournier C, Hess P, Yang DD, Xu J, Turner TK, Nimnual A, Bar-Sagi D, Jones SN, Flavell RA & Davis RJ. (2000). Requirement of JNK for stress-induced activation of the cytochrome c-mediated death pathway. Science. 288(5467), 870-874. https://doi.org/10.1126/science.288.5467.870

Tournier C, Dong C, Turner TK, Jones SN, Flavell RA & Davis RJ. (2001). MKK7 is an essential component of the JNK signal transduction pathway activated by proinflammatory cytokines. Genes Dev. 15(11), 1419-1426. https://doi.org/10.1101/gad.888501

Trouba K & Germolec D. (2004). Micromolar concentrations of sodium arsenite induce cyclooxygenase-2 expression and stimulate p42/44 mitogen-activated protein kinase phosphorylation in normal human epidermal keratinocytes. Toxicol Sci. 79, 248-257. https://doi.org/10.1093/toxsci/kfh132

Wang Y, Zhao M, Liu S, Guo J, Lu Y, Cheng J & Liu J. (2020). Macrophage-derived extracellular vesicles: diverse mediators of pathology and therapeutics in multiple diseases. Cell Death Dis. 11(10), 924. https://doi.org/10.1038/s41419-020-03127-z

Willingham MC. (1999). Cytochemical methods for the detection of apoptosis. J Histochem Cytochemistry. 47(9), 1101-1109. https://doi.org/10.1177/002215549904700901

Wong E, Xu F, Joffre J, Nguyen N, Wilhelmsen K & Hellman J. (2021). ERK1/2 has divergent roles in LPS-induced microvascular endothelial cell cytokine production and permeability. Shock. 55(3), 349-356. https://doi.org/10.1097/SHK.0000000000001639

Wortzel I & Seger R. (2011). The ERK cascade: Distinct functions within various subcellular organelles. Genes Cancer. 2(3), 195-209. https://doi.org/10.1177/1947601911407328

Xaus J, Comalada M, Valledor AF, Lloberas J, López-Soriano F, Argilés JM, Bogdan C & Celada A. (2000). LPS induces apoptosis in macrophages mostly through the autocrine production of TNF-alpha. Blood. 95(12), 3823-3831. https://doi.org/10.1182/blood.V95.12.3823

Xia Y, Makris C, Su B, Li E, Yang J, Nemerow GR & Karin M. (2000). MEK kinase 1 is critically required for c-Jun N-terminal kinase activation by proinflammatory stimuli and growth factor-induced cell migration. Proc Natl Acad Sci USA. 97(10), 5243-5248. https://doi.org/10.1073/pnas.97.10.5243

Xie B, Laouar A & Huberman E, (1998). Autocrine regulation of macrophage differentiation and 92-kDa gelatinase production by tumor necrosis factor {alpha} via {alpha}5{beta}1 integrin in HL-60 cells. J Biol Chem. 273(19), 11583-11588. https://doi.org/10.1074/jbc.273.19.11583

Xu S, Lyu QR, Ilyas I, Tian XY & Weng J. (2022). Vascular homeostasis in atherosclerosis: A holistic overview. Front Immunol. 13, 976722. https://doi.org/10.3389/fimmu.2022.976722

Yan H, He L, Lv D, Yang J & Yuan Z. (2024). The role of the dysregulated JNK signaling pathway in the pathogenesis of human diseases and its potential therapeutic strategies: A comprehensive review. Biomol. 14(2), 243. https://doi.org/10.3390/biom14020243

Yin Y, Wang S, Sun Y, Matt Y, Colburn NH, Shu Y & Han X. (2009). JNK/AP-1 pathway is involved in tumor necrosis factor-alpha induced expression of vascular endothelial growth factor in MCF7 cells. Biomed Pharmacother. 63(6), 429-435. https://doi.org/10.1016/j.biopha.2009.04.045

Zhang H, Park Y, Wu J, Chen Xp, Lee S, Yang J, Dellsperger KC & Zhang C. (2009). Role of TNF-α in vascular dysfunction. Clin Sci (Lond). 116(3), 219-230. https://doi.org/10.1042/CS20080196

Zhang X, Kang Z, Yin D & Gao J. (2023). Role of neutrophils in different stages of atherosclerosis. Innate Immun. 6, 97-109. https://doi.org/10.1177/17534259231189195

Downloads

Published

2025-06-25

How to Cite

VATAMANU, S.-M., ȚUCUREANU, M., MIHĂILĂ, A., BUTOI, E., & FARKAS, A. (2025). MΦ macrophage – N0 neutrophil dialogue in the presence of TNF-α affects the endothelium. Studia Universitatis Babeș-Bolyai Biologia, 70(1), 303–326. https://doi.org/10.24193/subbbiol.2025.1.14

Issue

Section

Articles

Similar Articles

1 2 3 > >> 

You may also start an advanced similarity search for this article.