First report of Planktothrix rubescens bloom from the Algerian freshwater reservoir Hammam Debagh

Authors

  • Fatma Zohra GUELLATI Ecobiology Laboratory for Marine Environments and Coastal Areas, Badji Mokhtar University of Annaba, Annaba, Algeria. Corresponding author: fatma-zohra.guellati@univ-annaba.dz https://orcid.org/0000-0001-7237-4341
  • Hassen TOUATI Ecobiology Laboratory for Marine Environments and Coastal Areas, Badji Mokhtar University of Annaba, Annaba, Algeria. https://orcid.org/0000-0002-4185-5449
  • Skander KADRI Ecobiology Laboratory for Marine Environments and Coastal Areas, Badji Mokhtar University of Annaba, Annaba, Algeria
  • Amel SAOUDI Laboratory for Marine Environments and Coastal Areas, Badji Mokhtar University of Annaba, Annaba, Algeria https://orcid.org/0000-0002-5495-0891
  • Luc BRIENT UMR/CNRS Ecobio 6553, University of Rennes I, Rennes, France
  • Mourad BENSOUILAH Ecobiology Laboratory for Marine Environments and Coastal Areas, Badji Mokhtar University of Annaba, Annaba, Algeria https://orcid.org/0000-0002-9574-5915

DOI:

https://doi.org/10.24193/subbbiol.2024.2.03

Keywords:

cyanobacteria, Planktothrix rubescens, phycocyanin, microcystin, Reservoir Hammam Debagh

Abstract

Massive cyanobacteria blooms have become a worldwide concern problem due to the multiple nuisances they can cause. The impacts of climate change are distinct from other environmental constraints controlling its population dynamics. The current study was accomplished in the monomictic reservoir Hammam Debagh (North-Eastern Algeria). A sampling campaign was conducted during May and June 2012 in four surface sampling stations and the water column in the center of this reservoir. This study aims to investigate the surface bloom of Planktothrix rubescens (De Candolle ex Gomont 1892) Anagnostidis and Komarek, 1988; observed for the first time in an Algerian reservoir with a focus on the environmental variable changes in 2012. During this thick epilimnetic bloom, P. rubescens spread in all water column layers, reaching 6.4 x 106 cells mL-1 at 2m from the surface recorded on 11.05.2012. Meanwhile, at the surface P. rubescens abundances ranged from 3 x 105 to 3.6 x 106 cells mL-1. The biomass was so high that the signal from the phycocyanin probe became saturated attending a value of 200 μg L-1 PC in the top 1 m. In addition, the biogenic compounds especially P-PO4 and NO3 show a high concentration of 0.48 mg L-1 and 5 mg L-1 respectively. The red pigmented cyanobacterium bloom altered environmental conditions in the reservoir Hammam Debagh, since primarily oxygen concentration shows a minimum of 2.63 mg L-1 and water transparency did not exceed 1m (min= 40cm). The vertical profile of temperature performed on 29.05.2012 over 33m; shows a stratified water column ranging from 22.6°C in the upper subsurface to 9.8°C in the bottom hypolimnion. Finally, suitable meteorological conditions were observed during 2012.

 Article history: Received 09 March 2024; Revised 13 August 2024;
Accepted 01 December 2024; Available online 10 December 2024

References

Akçaalan R, Köker L, Gürevin C & Albay M. (2014). Planktothrix rubescens: A perennial presence and toxicity in Lake Sapanca. Turk. J. Botany. 38(4):782–789. https://doi.org/10.3906/bot-1401-26

Almodóvar A, Nicola GG & Nuevo M. (2004). Effects of a bloom of Planktothrix rubescens on the fish community of a Spanish reservoir. Limnetica 23(1–2):167–78. https://doi.org/10.23818/limn.23.15

Bartram, J, Carmichael, WW, Chorus, I, Jones, G & Skulberg, OM. (1999). Introduction In I. Chorus and J. Bartram (ed.), Toxic Cyanobacteria in water: a guide to their public health consequences, monitoring and management. E & FN Spon, London, United Kingdom. pp. 1-13.

Benayache N, Kherief-Nacereddine S, Vo-Quoc B, Hushchyna K, Nguyen-Quang T & Bouaïcha N. (2022). Massive fish death associated with the toxic cyanobacterial Planktothrix sp. bloom in the Béni Haroun Reservoir (Algeria). Environ. Sci. Pollut. Res. 29:80849–80859. https://doi.org/10.1007/s11356-022-21538-7

Bouaïcha N, & Nasri AB. (2004). First report of cyanobacterium Cylindrospermopsis raciborskii from Algerian freshwaters. Environ. Toxicol. 19(5):541–543. https://doi.org/10.1002/tox.20058

Bouhaddada R, Nélieu S, Nasri H, Delarue G & Bouaïcha N. (2016). High diversity of microcystins in a Microcystis bloom from an Algerian lake. Environ. Pollut. 216:836–844. https://doi.org/10.1016/j.envpol.2016.06.055

Boussadia MI, Sehli N, Bousbia A, Ouzrout R & Bensouilah M. (2015). The effect of environmental factors on cyanobacteria abundance in Oubeira Lake (Northeast Algeria). Res. J. Fish Hydrobiol. 10(14):157–168.

Briand JF, Jacquet S, Flinois C, Avois-Jacquet C, Maisonnette C, Leberre B & Humbert JF. (2005). Variations in the microcystin production of Planktothrix rubescens (Cyanobacteria) assessed from a four-year survey of Lac du Bourget (France) and from laboratory experiments. Microb. Ecol. 50(3):418–428. https://doi.org/10.1007/s00248-005-0186-z

Carmichael, WW, Azevedo, SM, An JS, Molica RJ, Jochimsen EM, Lau S, Rinehart KL, Shaw GR & Eaglesham GK. (2001). Human fatalities from cyanobacteria: Chemical and biological evidence for cyanotoxins. Environ. Health Perspect. 109:663-668.http://doi.org/10.1289/ehp.01109663

Cerasino L, Shams S, Boscaini A & Salmaso N. (2016). Multiannual trend of microcystin production in the toxic cyanobacterium Planktothrix rubescens in. Chem. Ecol. 32(5):492–506. https://doi.org/10.1080/02757540.2016.1157175

Chirico N, António DC, Pozzoli L, Marinov D, Malagó A, Sanseverino I, Beghi A, Genoni, P, Dobricic S & Lettieri T. (2020). Cyanobacterial blooms in Lake Varese: Analysis and characterization over ten years of observations. Water (Switzerland). 12(3):1–21. https://doi.org/10.3390/w12030675

De Stasio BT, Hill DK, Kleinhans JM, Nibbelink NP & Magnuson JJ. (1996). Potential effects of global climate change on small north-temperate lakes: Physics, fish, and plankton. Am. Soc. Limnol. Oceanogr. 41(5):1136–1149.

Downing JA, Watson SB. (2001). Mc Cauley and E. Predicting cyanobacteria dominance in lakes. Can. J. Fish. Aquat. Sci. 58:1905–1908. https://doi.org/10.1139/cjfas-58-10-1905

El Herry S, Nasri H & Bouaïcha N. (2009). Morphological characteristics and phylogenetic analyses of unusual morphospecies of Microcystis novacekii forming bloom in the Cheffia Dam (Algeria). J. Limnol. 68(2):242–250. https://doi.org/10.3274/JL09-68-2-08

Ernst B, Hoeger SJ, O’brien E & Dietrich DR. (2007). Physiological stress and pathology in European whitefish (Coregonus lavaretus) induced by subchronic exposure to environmentally relevant densities of Planktothrix rubescens. Aquat. Toxicol. 82(1):15–26.

Ernst B, Hoeger SJ, O’Brien E & Dietrich DR. (2009). Abundance and toxicity of Planktothrix rubescens in the pre-alpine Lake Ammersee, Germany. Harmful Algae. 8(2):329–342. https://doi.org/10.1016/j.hal.2008.07.006

Fastner J, Erhard M, Carmichael WW, Sun F, Rinehart KL, Ronicke H, et al. (1999). Characterization and diversity of microcystins in natural blooms and strains of the genera Microcystis and Planktothrix from German freshwaters. Arch. Fur. Hydrobiol. 145(2):147–163.

Gallina N, Anneville O & Beniston M. (2011). Impacts of extreme air temperatures on cyanobacteria in five deep peri-alpine lakes. J. Limnol. 70(2):186–196. https://doi.org/10.3274/JL11-70-2-04

Garneau M-È, Posch T, Hitz G, Pomerleau F, Pradalier C, Siegwart R, et al. (2013). Short-term displacement of Planktothrix rubescens (cyanobacteria) in a pre-alpine lake observed using an autonomous sampling platform. Limnol Oceanogr. https://doi.org/10.4319/lo.2013.58.5.1892

Grossart H-P & Simon M. (2007). Interactions of planctonic algae and bacteria: Effects on algal growth and organic matter dynamics. Aquat Microb Ecol. 47(3):163–76. https://doi.org/10.3354/ame047163

Guellati FZ, Touati H, Tambosco K, Quiblier C, Humbert J-F & Bensouilah M. (2017). Unusual cohabitation and competition between Planktothrix rubescens and Microcystis sp. (cyanobacteria) in a subtropical reservoir (Hammam Debagh) located in Algeria. Gorokhova E, (ed.). PLoS One. 31;12(8):e0183540. https://doi.org/10.1371/journal.pone.0183540

Halstvedt CB, Rohrlack T, Andersen T, Skulberg O & Edvardsen B. (2007). Seasonal dynamics and depth distribution of Planktothrix spp. in Lake Steinsfjorden (Norway) related to environmental factors. J Plankton Res. 29(5):471–482. https://doi.org/10.1093/plankt/fbm036

Hoikkala L, Tammert H, Lignell R, Eronen-Rasimus E, Spilling K & Kisand V. (2016). Autochthonous dissolved organic matter drives bacterial community composition during a bloom of filamentous cyanobacteria. Front. Mar. Sci. 3:111. https://doi.org/10.3389/fmars.2016.00111

Jacquet S, Briand J-F, Leboulanger C, Avois-Jacquet C, Oberhaus L, Tassin B, et al. (2005). The proliferation of the toxic cyanobacterium Planktothrix rubescens following restoration of the largest natural French lake (Lac du Bourget). Harmful Algae 4(4):651–672. https://doi.org/10.1016/j.hal.2003.12.006

Jann-Para G, Schwob I & Feuillade M. (2004). Occurrence of toxic Planktothrix rubescens blooms in lake Nantua, France. Toxicon. 1;43(3):279–285. https://doi.org/10.1016/j.toxicon.2003.12.005

Janse I, Kardinaal WEA, Agterveld MK V, Meima M, Visser PM & Zwart G. (2005). Contrasting microcystin production and cyanobacterial population dynamics in two Planktothrix-dominated freshwater lakes. Environ. Microbiol. 7(10):1514–1524. https://doi.org/10.1111/j.1462-2920.2005.00858.x

Knapp D, Fernández Castro B, Marty D, Loher E, Köster O, Wüest A & Posch T. (2021). The red harmful plague in times of climate change: Blooms of the cyanobacterium Planktothrix rubescens triggered by stratification dynamics and irradiance. Front. Microbiol. 12:1–19. https://doi.org/10.3389/fmicb.2021.705914

Komárek J & Anagnostidis K. (1999). Cyanoprokaryota: Part 1: Chroococcales. SüBwasser flora von Mittelleuropa. Freshwater flora of Central Europe. Spektrum Akademischer Verlag Heidelberg, Germany. 548pp.

Komárek J & Anagnostidis K (2005). Cyanoprokaryota: Part 2: Oscillatoriales. SüBwasser flora von Mittelleuropa. Freshwater flora of Central Europe. Spektrum Akademischer Verlag Heidelberg, Germany. 759pp.

Komatsua E, Fukushima T & Harasawa H. (2007). A modeling approach to forecast the effect of long-term climate change on lake water quality. Ecol. Model. 209:351–366.

Kurmayer R, ChristiansenG, Fastner J. & Berner T. (2004). Abundance of active and inactive microcystin genotypes in populations of the toxic cyanobacterium Planktothrix spp. Environ. Microbiol. 6(8):831–841. https://doi.org/10.1111/j.1462-2920.2004.00626.x

Legnani E, Copetti D, Oggioni A, Tartari G, Palumbo MT & Morabito G. (2005). Planktothrix rubescens’s seasonal dynamics and vertical distribution in lake Pusiano (Italy). J. Limnol. 64(1):61-73. https://doi.org/10.4081/jlimnol.2005.61

Lenard T & Poniewozik M. (2022). Planktothrix agardhii versus Planktothrix rubescens: Separation of ecological niches and consequences of cyanobacterial dominance in freshwater. Int. J. Environ. Res. Public Health 19(22):14897. https://doi.org/10.3390/ijerph192214897

Long BM, Jones GJ & Orr PT. (2001). Cellular microcystin content in N-limited Microcystis aeruginosa can be predicted from growth rate. Appl. Environ. Microbiol. 67(1):278–283. https://doi.org/10.1128/AEM.67.1.278-283.2001

Manganelli M, Stefanelli M, Vichi S, Andreani P, Nascetti G, Scialanca F, Scardala S, Testai E & Funari E. (2016). Cyanobacteria biennal dynamic in a volcanic mesotrophic lake in central Italy: Strategies to prevent dangerous human exposures to cyanotoxins. Toxicon. 115:28–40. https://doi.org/10.1016/j.toxicon.2016.03.004

Micheletti S, Schanz F & Walsby AE. (1998). The daily integral of photosynthesis by Planktothrix rubescens during summer stratification and autumnal mixing in Lake Zurich. New Phytol. 139(2):233–246. https://doi.org/10.1046/j.1469-8137.1998.00196.x

Moiron M, Rimet F, Girel C & Jacquet S. (2021). Die hard in Lake Bourget ! The case of Planktothrix rubescens reborn. Ann. Limnol. Int. J. Lim. 57:19. DOI: https://doi.org/10.1051/limn/2021014

Nasri H, El Herry S & Bouaïcha N. (2008). First reported case of turtle deaths during a toxic Microcystis spp. bloom in Lake Oubeira, Algeria. Ecotoxicol. Environ. Saf. 71(2):535–544. https://doi.org/10.1016/j.ecoenv.2007.12.009

Neilan BA, Pearson LA, Muenchhoff J, Moffitt MC & Dittmann E. (2013). Environmental conditions that influence toxin biosynthesis in cyanobacteria. Environ. Microbiol. 15:1239–1253. https://doi.org/10.1111/j.1462-2920.2012.02729.x

Nürnberg GK, LaZerte BD & Olding DD. (2003). Surface bloom in a small kettle lake in Southern Ontario compared to blooms worldwide. Lake Reserv. Manag. 19(4):307–322. https://doi.org/10.1080/07438140309353941

Posch T, Köster O, Salcher MM & Pernthaler J. (2012). Harmful filamentous cyanobacteria favoured by reduced water turnover with lake warming. Nat. Clim. Chang. 2(11):809–813. https://doi.org/10.1038/nclimate1581

Reynolds CS, Huszar V, Kruk C, Naselli L & Melo S. (2002). Towards a functional classification of the freshwater phytoplankton. J. Plankton Res. 24(5):417–428.

Charifi S, Merad T, Guellati FZ, Touati H, Bensouilah M. (2019). Dynamic of filamentous cyanobacteria in the Dam Ain Zada (North of Algeria). J. Ecol. Eng. 20(5):97–110.

Saoudi A, Brient L, Boucetta S, Ouzrout R, Bormans M & Bensouilah M. (2017). Management of toxic cyanobacteria for drinking water production of Ain Zada Dam. Environ. Monit. Assess. 189(7):361. https://doi.org/10.1007/s10661-017-6058-4

Sivonen, K., Carmichael, W. W., Namikoshi, M., Rinehart, K., Dahlem, A. M. & Niemela, S. (1990). Isolation and characterization of hepatotoxic microcystin homologs from the filamentous freshwater cyanobacterium Nostoc sp. strain 152. Appl. Environ. Microbiol. 56:2650–2657.

Stefanelli M, Scardala S, Cabras PA, Orrù A, Vichi S, Testai E, Funari E & Manganelli M. (2017). Cyanobacterial dynamics and toxins concentrations in Lake Alto Flumendosa, Sardinia, Italy. Adv. Oceanogr. Limnol. 8(1).

https://doi.org/10.4081/aiol.2017.6352

Sulis A, Buscarinu P, Soru O & Sechi GM. (2014). Trophic state and toxic cyanobacteria density in optimization modeling of multi-reservoir water resource systems. Toxins (Basel) 6:1366–1384. https://doi.org/10.3390/toxins6041366

Trbojević I, Blagojević A, Marjanović P, Krizmanić J & Subakovć G. (2019). Periphyton development during summer stratification in the presence of a metalimnetic bloom of Planktothrix rubescens. Limnologica 78:12579. https://doi.org/10.1016/j.limno.2019.125709

Vareli K, Briasoulis E, Pilidis G & Sainis I. (2009). Molecular confirmation of Planktothrix rubescens as the cause of intense, microcystin-synthesizing cyanobacterial bloom in Lake Ziros, Greece. Harmful Algae. 8(3):447–453. https://doi.org/10.1016/j.hal.2008.09.005

Wood SA, Rueckert A, Hamilton DP, Cary SC & Dietrich DR. (2011). Switching toxin production on and off: Intermittent microcystin synthesis in a Microcystis bloom. Environ. Microbiol. Rep. 3(1):118–124. https://doi.org/10.1111/j.1758-2229.2010.00196.x

Downloads

Published

2024-12-10

How to Cite

GUELLATI, F. Z., TOUATI, H., KADRI, S., SAOUDI, A., BRIENT, L., & BENSOUILAH, M. (2024). First report of Planktothrix rubescens bloom from the Algerian freshwater reservoir Hammam Debagh. Studia Universitatis Babeș-Bolyai Biologia, 69(2), 47–61. https://doi.org/10.24193/subbbiol.2024.2.03

Issue

Section

Articles

Similar Articles

You may also start an advanced similarity search for this article.