Enhanced azo dye (Sudan G) decolorization and simultaneous electricity generation using a bacterial consortium in a dual-chamber microbial fuel cell

Authors

DOI:

https://doi.org/10.24193/subbbiol.2025.1.05

Keywords:

wastewater, biodegradation, 16srRNA, electricity generation, response surface methodology

Abstract

Azo dyes are prevalent anthropogenic compounds, making their enhanced treatment crucial in our color-saturated world. This study examined the ability of a microbial consortium, comprising Pseudomonas aeruginosa (MW584979), Enterobacter hormaechei (MW584986), Providencia stuartii (MW584987), Escherichia coli (MZ394117), and Pseudomonas xiamenensis (MW585052), to decolorize Sudan orange G in a microbial fuel cell (MFC) after determining the optimal conditions for dye decoorization using response surface methodology (RSM) and the One Factor at a Time (OFAT) method. Degradation products were analyzed using the gas chromatography-mass spectroscopy technique. The consortium achieved an 88% decolorization rate within 24 hours under the optimal conditions identified by the Central Composite Design (CCD) of RSM. These conditions, pH 7.0, temperature 35, salinity 5 g/L, and glucose concentration 10 g/L, when applied in the MFC, resulted in an enhanced decolorization rate of 92% and simultaneous electricity generation of 130 mV within 24 hours. GC-MS analysis confirmed the breakdown of the azo dye into simpler, less toxic compounds. Metabolites produced through RSM and MFC processes were identified and compared with controls using chromatography-mass spectrometry. Degradation metabolites obtained after treatment of the dye wastewater in the MFC include Cyclopentane and cyclopropylidene-2(1H)-naphthalenone which highlights the role of microbial enzymatic activity in converting complex azo dye structures into environmentally benign compounds. These results highlight the successful integration of RSM for process optimization and MFCs for enhanced biodegradation and renewable energy production. The scalability of this technique is promising, given the relatively simple and cost-effective setup of MFC systems. Moreover, the economic feasibility of large-scale deployment is enhanced by the dual benefits of wastewater treatment and renewable energy production, making it a sustainable solution for managing azo dye pollution.

Article history: Received 7 August 2024; Revised 3 December 2024;
Accepted 22 May 2025; Available online 25 June 2025

References

Al-Ansari, M.M., Li, Z., Masood, A. & Rajaselvam, J. (2022). Decolourization of azo dye using a batch bioreactor by an indigenous bacterium Enterobacter aerogenes ES014 from the waste water dye effluent and toxicity analysis. Environ Res, 205, 112189. https://doi.org/10.1016/j.envres.2021.112189

Al-Tohamy, R., Ali S. S., Xie, R., Schager, M., Khalil, M. A. & Sun, J. (2023). Decolorization of reactive azo dye using novel halotolerant yeast consortium HYC and proposed degradation pathway. Ecotoxicol Environ Safe, 263, 115258. https://doi.org/10.1016/j.ecoenv.2023.115258

Cao, J., Sanganyado, E., Liu, W., Zhang, W. & Liu, Y. (2019). Decolorization and detoxification of Direct Blue 2B by indigenous bacterial consortium. J Environ Manage, 242, 229-237. https://doi.org/10.1016/j.jenvman.2019.04.067

Chen, G., An, X., Li, H., Lai, F., Yuan, E., Xia, X. & Zhang, Q. (2021). Detoxification of azo dye Direct Black G by thermophilic Anoxybacillus sp. PDR2 and its application potential in bioremediation. Ecotoxicol Environ Safe, 214, 112084. https://doi.org/10.1016/j.ecoenv.2021.112084

Chen, K., Wua, J., Liou, D. H. & Sz-Chwun, J. (2003). Decolorization of the textile dyes by newly isolated bacterial strains. J Biotechnol, 101, 57–68. https://doi.org/10.1016/s0168-1656(02)00303-6

Dafale, N., Wate, S., Meshram, S. & Nandy, T. (2008). Kinetic study approach of emazol black-B use for the development of two-stage anoxic–oxic reactor for decolorization/ biodegradation of azo dyes by activated bacterial consortium. J Hazard Mater, 159(2-3), 319–328. https://doi.org/10.1016/j.jhazmat.2008.02.058

Das, A. & Mishra, S. (2017). Removal of textile dye reactive green-19 using bacterial consortium: Process optimization using response surface methodology and kinetics study. J Environ Chem Eng, 5(1), 612-627. https://doi.org/10.1016/j.jece.2016.10.005

Eslami, M., Amoozegar, M. A. & Asad, S. (2016). Isolation, cloning and characterization of an azoreductase from the halophilic bacterium Halomonas elongata. Int. J. Biol. Macromol., 85, 111–116.

Etezad, S. M., & Sadeghi-Kiakhani, M. (2021). Decolorization of malachite green dye solution by bacterial biodegradation. Prog. Color Colorants Coat., 14(2), 79-87.

Fahad, A. A., Abdulaziz, A.A., Hamdah, S.A., Amjad, A.A. & Naushad, A., (2020). Photocatalytic blue and rose bengal by using urea derived g-C3N4/ZnO nanocomposites. Innov Catalytic Photocatalytic Systems Environ Remediation, 10 (12), 1457. https://doi.org/10.3390/catal10121457

Felsenstein, J. (1985). Phylogenies and the comparative method. Am. Nat, 125(1),1–15. https://doi.org/10.1111/j.1558-5646.1985.tb00420.x

Firoozeh, F., Shahamat, Y. D., Rodríguez-Couto, S., Kouhsari, E. & Farhad, N. F. (2022). Bioremediation for the decolorization of textile dyes by bacterial strains isolated from dyeing wastewater. Jordan J Biol Sci, 15(2), 219-225. https://doi.org/10.54319/jjbs/150209

Georgiou, D., Metallinou, C., Aivasidis, A., Voudrias, E. & Gimouhopoulos, K. (2004). Decolorization of azo-reactive dyes and cotton-textile wastewater using anaerobic digestion and acetate-consuming bacteria. Biochem Eng J, 19(1), 75–79. https://doi.org/10.1016/j.bej.2003.11.003

Gul, H., Raza, W., Lee, J., Azam, M., Ashraf, M. & Kim, K. (2021). Progress in microbial fuel cell technology for wastewater treatment and energy harvesting. Chemosphere, 281, 130828. https://doi.org/10.1016/j.chemosphere.2021.130828

Hague, M.M., Hague, M.K., Mosharaf, M.K., Rahman, A., Islam, M.S., Nahar, K. & Molla, A.H. (2023). Enhanced biofilm-mediated degradation of carcinogenic and mutagenic azo dye by novel bacteria isolated from tannery wastewater. J Environ Chem Eng, 11(42), 110731. https://doi.org/10.1016/j.jece.2023.110731

Hu, L, Liu, N., Li, C., Mao, J., Li, M., Yun, Y. & Liu, W. (2023). Performance and response of coupled microbial fuel cells for enhanced anaerobic treatment of azo dye wastewater with simultaneous recovery of electrical energy. Environ Sci Pollut Res Int, 30(38), 89495-89509. https://doi.org/10.1007/s11356-023-28582-x

Ikram, M., Naeem, M., Zahoor, M., Hanafiah, M. M., Oyekanmi, A. A., Islam, N. U. & Sadiq, A. (2022). Bacillus subtilis: As an efficient bacterial strain for the reclamation of water loaded with textile azo dye, orange II. Int J Mol Sci, 23(18), 10637.

Jukes, T.H. & Cantor, C.R. (1969). Evolution of protein molecules: Mammalian protein metabolism. Academic Press, New York, 21-132. http://dx.doi.org/10.1016/B978-1-4832-3211-9.50009-7

Kapdan, I.K., Kargi,F., McMullan, G. & Marchant, R. (2000). Decolorization of textile dyestuffs by a mixed bacterial consortium. Biotechnol Lett, 22, 1191181. http://dx.doi.org/10.1023/A:1005641430613

Keziban, A., Nuray, G., Soner, C. & Mahmut, O. (2019). Efficiency of glucose oxidase immobilized on tannin modified NiFe2O4 nanoparticles on decolorization of dye in the fenton and photo-biocatalyic processes. J Photochem Photobiol, 382, 111935. https://doi.org/10.1016/j.jphotochem.2019.111935

Kumaravel, R. & Shanmugam, V. K. (2024). Biomimetic and ecological perspective towards decolorization of industrial important Azo dyes using bacterial cultures–A review. Sustainable Chemistry for the Environment, p. 100130. https://doi.org/10.1016/j.scenv.2024.100130

Ilamathi, R. & Jayapriya, J. (2017). Microbial fuel cells for dye decolorization. Environ Chem Lett, 16, 239-250 https://doi.org/10.1007/s10311-017-0669-4

Li, T., Song, H. L., Xu, H., Yang, X. L. & Chen, Q. L. (2021). Biological detoxification and decolorization enhancement of azo dye by introducing natural electron mediators in MFCs. J Hazard Mater, 416, 125864. https://doi.org/10.1016/j.jhazmat.2021.125864

Liu, W., Liu, L., Liu, C., Hao, Y., Yang, H., Yuan, B. & Jiang, J. (2016). Methylene blue enhances the anaerobic decolorization and detoxication of azo dye by Shewanella onediensis MR-1. Biochem Eng J, 110, 115–124. https://doi.org/10.1016/j.bej.2016.02.012

Liu, Y., Huang, L., Guo, W., Jia, L., Fu, Y., Gui, S. & Lu, F. (2017). Cloning, expression, and characterization of a thermostable and pH-stable laccase from Klebsiella pneumoniae and its application to dye decolorization. Process Biochem, 53, 125–134. https://doi.org/10.1016/j.procbio.2016.11.015

Madhushika, H. G., Ariyadasa, T. U. & Gunawardena, S. H. P. (2021). Biodegradation of reactive yellow EXF dye: optimization of physiochemical parameters and analysis of degradation products. Int J Environ Sci Technol, 1-12.

Matteo, D., Anna, E. T., Barbara, L., Pierangela, C., Maddalena, P., Elham, J., Giuseppina, B. & Andrea, F. (2018). Bioelectrochemical BTEX removal at different voltages: assessment of the degradation and characterization of the microbial communities. J Hazard Mater, 341, 120-127. https://doi.org/10.1016/j.jhazmat.2017.07.054

Mendes, S., Pereira, L., Batista, C., & Martins, L. O. (2011). Molecular determinants of azo reduction activity in the strain Pseudomonas putida MET94. Appl Microbiol Biotechnol, 92(2), 393–405.

Mittal, N. & Kumar, A. (2022). Microbial fuel cell as water-energy environment nexus: a relevant strategy for treating streamlined effluents. Energy Nexus, 7, 100097. https://doi.org/10.1016/j.nexus.2022.100097

Md Burhan Kabir Suhan, S.M. Tanveer Mahtab, Wafi Aziz, Sonia Akter, & Md Shahinoor Islam (2021). Sudan black B dye degradation in aqueous solution by fenton oxidation process: kinetics and cost analysis. Case Stud Chem Environ Eng, 4, 100126. https://doi.org/10.1016/j.cscee.2021.10012

Mugerfeld, I., Law, B. A., Wickham, G. S. & Thompson, D. K. (2009). A putative azoreductase gene is involved in the Shewanella oneidensis response to heavy metal stress. Appl Microbiol Biotechnol, 82(6), 1131–1141.

Ngo, A. C. R. & Tischler, D. (2022). Microbial degradation of azo dyes: approaches and prospects for a hazard-free conversion by microorganisms. J Environ Sci Pub Health, 19, 4740. https://doi.org/10.3390/ijerph19084740

NIST (2008). Glucose in Frozen Human Serum. National Institute of Standards & Technology Certificate of Analysis, In: Linstrom PJ, Mallard WG (eds). NIST Chemistry WebBook. NIST Standard Reference Database Number 965a. Gaithersburg, MD 20899 National Institute of Standards and Technology, 2011, 20899, http://webbook.nist.gov (retrieved April 27, 2011)

Nk, S. & Rahman, R. (2020). Microbial fuel cell an alternative for treatment of textile wastewater. Int Res J Eng Technol, 7(4), 3962-3967.

OECD (2017), OECD Due Diligence Guidance for Responsible Supply Chains in the Garment and Footwear Sector, OECD Publishing, Paris. https://doi.org/10.1787/9789264290587-en

Qi, J., Paul, C. E., Hollmann, F. & Tischler, D. (2017). Changing the electron donor improves azoreductase dye degrading activity at neutral pH. Enzyme Microb Technol, 100, 17–19.

Qi, J., Schlömann, M. & Tischler, D. (2016). Biochemical characterization of an azoreductase from Rhodococcus opacus 1CP possessing methyl red degradation ability. Journal of Molecular Catalysis B: Enzymatic, 130, 9–17.

Rafaqat, S., Ali, N. Torres, C., C. & Rittmann, B. (2022). Recent progress in treatment of dyes wastewater using microbial-electro-Fenton technology. RSC Advances, 12, 17104-17137. https://doi.org/10.1039/D2RA01831D

Sarkar, S., Echeverría-Vega, A., Banerjee, A. & Bandopadhyay, R. (2021). decolorisation and biodegradation of textile di-azo dye Congo red by chryseobacterium geocarposphaerae DD3. Sustainability, 13(19), 10850.

Sihang, S, Pengfei, F. Yi, X. & Geng, Q. (2013). Experimental research of decoloring treatment on vitamin B12 wasterwater. Appl Mech Mater, 295-298:1209-1214 http://dx.doi.org/10.4028/www.scientific. net/AMM.295-298.1209

Sikder, S. & Rahman, M. M. (2023). Efficiency of microbial fuel cell in wastewater (municipal, textile and tannery) treatment and bioelectricity production. Case Stud Chem Environ Eng, 8, 100421. https://doi.org/10.1016/j.cscee.2023.100421

Saitou, N. & Nei, M. (1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol, 4(4), 406-25. https://doi.org/10.1093/oxfordjournals.molbev.a040454. PMID: 3447015.

Taha, M., Adetutu, E.M., Shahsavari, E., Smith, A.t. & Ball, A.S., (2014). Azo and anthraquinone dye mixture decolorization at elevated temperature and concentration by a newly isolated thermophilic fungus, Thermomucor indicae-seudaticae. J Environ Chem Eng, 2(1), 415-423. https://doi.org/10.1016/j.jece.2014.01.015

Tahir, U., Nawaz, S., Hassan Khan, U. & Yasmin, A. (2021). Assessment of biodecolorization potentials of biofilm forming bacteria from two different genera for mordant black 11 dye. Bioremediation Journal, 25(3), 252-270.

Tian, F., Wang, Y., Guo, G., Ding, K., Yang, F., Wang, H. & Liu, C. (2021). Enhanced azo dye biodegradation at high salinity by a halophilic bacterial consortium. Bioresource Technol., 326, 124749. https://doi.org10.1016/j.biortech.2021.124749

Trivedi, A., Desireddy, S. & Chacko, S.P. (2022). Effect of pH, salinity, dye, and biomass concentration on decolorization of azo dye methyl orange in denitrifying conditions. Water, 14, 3747. https://doi.org/10.3390/w14223747

Umar, A., Abid, I., Antar, M., Dufossé, L., Hajji Hedf, L., Elshikh, M. S., Abeer El Shahawy, A. & Abdel Azeem, A. M. (2023). Electricity generation and oxidoreductase potential during dye discoloration by laccase-producing Ganoderma gibbosum in fungal fuel cell. Microb cell fact, 22, 258. https://doi.org/10.1186/s12934-023-02258-0

Uppala, R., Sundar, K. & Muthukumaran, A. (2015). Response surface methodology mediated optimization of decolorization of azo dye amido black 10B by Kocuria kristinae RC3. Inter J Environ Sci Technol, 2018, 1–12. https://doi.org/10.1007/s13762-018-1888-3

Zhang, Q., Xie, X., Xu, D., Hong, R., Wu, J., Zeng, X. & Liu, J. (2021). Accelerated azo dye biodegradation and detoxification by Pseudomonas aeruginosa DDMZ1-2 via fructose co-metabolism. Environ Technol Innov, 24, 101878.

Downloads

Published

2025-06-25

How to Cite

ECHEJIUBA, C. J., OGUGBUE, C. J., & OBUEKWE, I. S. (2025). Enhanced azo dye (Sudan G) decolorization and simultaneous electricity generation using a bacterial consortium in a dual-chamber microbial fuel cell. Studia Universitatis Babeș-Bolyai Biologia, 70(1), 85–120. https://doi.org/10.24193/subbbiol.2025.1.05

Issue

Section

Articles

Similar Articles

1 2 3 4 > >> 

You may also start an advanced similarity search for this article.