Tomato powder processing involving different pretreatments: its effect on quality of the product packaged in polyethylene terephthalate pouches
DOI:
https://doi.org/10.24193/subbbiol.2025.1.09Keywords:
ascorbic acid, blanching, lycopene, postharvest losses, shelf lifeAbstract
The method of drying fresh tomato (Lycopersicon esculentum mill) to prevent quick spoilage, could affect the quality of the product, and influence consumer acceptability. This study is focused on determining the effect of different pretreatments on the quality of tomato powders packaged in polyethylene terephthalate pouches, and stored for 16 weeks at room temperature (25±2 ºC). A total of six tomato powder samples, which include the blanched ascorbic acid pretreated (BAAP), unblanched ascorbic acid pretreated (UAAP), blanched lime juice pretreated (BLJP), unblanched lime juice pretreated (ULJP), sundried without pretreatment (SDTP), and the control (without pretreatment; dehydrator used for drying), was prepared. The total viable counts (TVC) of the stored tomato powders were within the range of 4.40-7.31 log10CFU/g. Although the TVC of the samples increased within the first few weeks, the values reduced as the storage period increased. The SDTP tomato powder maintained a higher TVC compared with other stored samples. There was a reduction in pH, moisture, ash, titratable acidity, and vitamin C content of the powdered tomatoes. The lycopene content of tomato powders was within the range of 102.13±1.53-132.70±1.46 mg/100g, while the fruit tomato was 18.96±1.27 mg/100g. There were significant differences (p<0.05) in the functional properties of the tomato powders, with few exceptions. Different pretreatments increased the water absorption capacity and bulk density of the samples, but reduced their emulsion stability. The BLJP and BAAP tomato powders had a very high sensory rating, whereas the SDTP sample was the least. Based on the overall results, blanched ascorbic acid pretreatment is recommended for the production of good quality tomato powder.
Article history: Received 14 October 2024; Revised 02 December 2024;
Accepted 04 March 2025; Available online 25 June 2025
References
Abano, E. E. & Sam-Amoah, L. (2011). Effects of different pretreatments on drying characteristics of banana slices. ARPN J Eng Appl Sci, 6(3), 121-129.
Abdulsalam, R. A., Ijabadenyi, O. A., Cason, E. D. & Sabiu, S. (2023). Characterization of microbial diversity of two tomato cultivars through targeted next-generation 16S rRNA and ITS technique. Microorganisms, 11, 2337. https://doi.org/10.3390/microorganisms11092337
Abushita, A. A., Davoodi, H. G. & Biacs, P. A. (2000). Change in carotenoids and antioxidant vitamins in tomato as a function of varietal and technological factors. J Agric Food Chem, 48, 2075-2081.
Adebowale, Y. A., Adeyemi, I. A. & Oshodi, A. A. (2005). Functional and physicochemical properties of six Mucuna species. Afr J Biotech, 4(12), 1461-1468.
Adedire, O., Oladejo, A. O., Mbah, J. J., Popoola, A. S., Sadiku, Y., Onuwa, G. C. & Sikiru, G. K. (2022). Analysis of spoilage and storage of fresh tomato in Plateau Nigeria. Food Agribusiness Mgt, 3(2), 37-41. http://doi.org/10.26480/fabm.02.2022.37.41
Adejo, G. O., Agbali, F. A. & Otokpa, O. S. (2015). Antioxidant, total lycopene, ascorbic acid and microbial load estimation in powdered tomato varieties sold in Dutsin-Ma market. Open Access Lib J, 2, 1-7. http://dx.doi.org/10.4236/oalib.1101768
Aderibigbe, O. R., Owolade, O. S., Egbekunle, K. O., Popoola, F. O. & Jiboku, O. O. (2018). Quality attributes of tomato powder as affected by different pre-drying treatments. Int Food Res J, 25(3), 1126-1132.
Agada, E. O., Mohammed, S. S. & Nurudeen, A. O. (2023): Isolation and identification of bacteria associated with selected canned tomatoes sold in Utako market, Abuja. FUW Trends Sci Tech J, 8(2), 319-325.
Aggarwal, P., Goyal, P. & Kpoor, S. (2016). Effect of drying methods and pre-treatments on phytonutrients of tomato slices. Int J Food Ferm Tech 6(2), 421-432. http://dx.doi.org/10.5958/2277-9396.2016.00068.4
Aguda, O. Y., Faola, D. B., Oyedeji, M. B., Adegboyega, D. A., Akala, A. O. & Omotoso, T. P. (2021). Microorganism associated with the deterioration of tomato fruits (Lycopersicon esculentum) in Shasha market, Akure, Ondo State. J Adv Microbiol Resear, 2(1), 01-06.
Ahaotu, I., Wondikom, M. & Maduka N. (2021a). A preliminary study on the effect of storage temperatures on the population of Bacillus cereus in dry ginger powder. J Biosci Biotech Discov, 6(5), 53-57.
Ahaotu, I., Eze, O. & Maduka, N. (2021b). Quality assessment of corn-breadfruit-date flour and sensory evaluation of chin-chin prepared using the composite flours. Adv Biotech Microbiol, 16(3), 35-53.
Ahmad, A., Gungula, D. T., Tame, V. T., Kapsiya, J., Ilesanmi, J. O. & Kirawa, D. M. A. (2022). Effects of different drying methods and packaging materials on the physical and sensory qualities of tomato (Lycopersicon lycopersicum L.). Intl J Agric Policy Resear, 10(1), 26-30. https://doi.org/10.15739/IJAPR.22.004
Akpaetok, D. E., Ahaotu, I. & Maduka, N. (2023). Effect of pasteurization and storage temperatures on the quality of carrot juices. Asian J Bio Sci, 16(4), 600-613.
Alabi, O. O., Abdulazeez, I., Anekwe, C. E., Sambo, S. B., Alabuja, F. O., Drisu, T., Safugha, G. F., Obinna-Nwandikom, C. O., Abdullahi, M. & Aluwong, S. J. (2023). Technical efficiency differentials of tomato (Solanum lycopersicum) production under traditional and improved technologies in Nigeria. Nepalese J Agric Sci, 24, 186-198. http://esjindex.org/search.php?id=6279
Aliyu, L. S., Usman, A. Y., Musa, A. & Mani, U. (2018). Fungi isolated from dried tomato chips marketed in Sokoto metropolis. J Adv Botany Zool, 6(2), 1-3. http://dx.doi.org/10.5281/zendo.1210138
Amurtiya, M. & Adewuyi, K. A. (2020). Analysis of tomato production in some selected local government areas of Kano State, Nigeria. Proceedings of the 3rd International Network for Economic Research Symposium on Agri-Tech Economics for Sustainable Futures, 80-88pp.
Anisuzzaman, S. M., Joseph, C. G., Nga, J. L. H. & Ismail, F. N. (2022). Effect of carrier agents and operational parameters on the physical quality of spray-dried tomato powder: a review. ASEAN J Chem Eng, 22(2), 228-247. http://dx.doi.org/10.22146/ajche.71487
AOAC (2000). Official Methods of Analysis of Association of Official Analytical Chemists International, 17th edition. Washington, USA.
Bawa, F. M. (2023). Evaluating the quality of swish oven dried tomato powder. Int J Home Sci, 9(3), 87-92.
Bhat, I. M., Wani, S. M., Mir, S. A. & Nssem, Z. (2023): Effect of microwave-assisted vacuum and hot air ovendrying methods on quality characteristics of apple pomace powder. Food Prod, Proc Nutri 5, 26. https://doi.org/10.1186/s43014-023-00141-4
Caritá, A. C., Fonseca-Santos, B., Shultz, J. D., Michniak-Kohn, B., Chorilli, M. & Leonardi, G. R. (2020). Vitamin C: one compound, several uses. Advances for delivery, efficiency and stability. Nanomedicine: Nanotech, Bio Med, 24, 1-15. https://doi.org/10.1016/j.nano.2019.102117
Chabi, I. B., Zannou, O., Dedehou, E. S. C. A., Ayegnon, B. P., Odouaro, O. B. O., Maqsoos, S., Galanakis, C. M. & Kayodé, A. P. P. (2024): Tomato pomace as a source of valuable functional ingredients for improving physicochemical and sensory properties and extending the shelf life of foods: a review. Heliyon, 10, 1-16. https://doi.org/10.1016/j.heliyon.2024.e25261
Chawafambira, A. & Maramba, B. B. (2022). Use of sodium metabisulphite and citric acid to control degradation of nutraceutical compounds in dried tomato powder during prolonged storage. J Food Proc Preserv, 46, e16149. https://doi.org/10.1111/jfpp.16149
Chen, C. H. L. B. H. (2005). Stability of carotenoids in tomato juice during processing. Eur Food Resear Tech, 221, 274-280.
Collins, E. J., Bowyer, C., Tsouza, A. & Chopra, M. (2022). Tomatoes: an extensive review of the associated health impacts of tomatoes and factors that can affect their cultivation. Bio, 11, 1-44. https://doi.org/10.3390/biology11020239
Cruickshank, R., Duguid, J. R., Mermin, B. P. & Swain, R. H. A. (1975). Medical Microbiology. Churchill Livingstone Edinburg, London.
Dabai, S. M., Hindatu, H., Buhari, Y., Mubarak, I. & Mukhtar, G. (2020). Determination of pH and microbiological quality of commonly used tomato pastes in Katsina metropolis, Katsina state, Nigeria. Int J Sc Tech, 8(6), 53-62. http://dx.doi.org/10.24940/theijst/2020/v8/i6/ST2006-021
Degwale, A., Asrat, F., Eniyew, K., Asres, D., Tesfa, T. & Ayalew, A. (2022). Influence of dehydration temperature and time on physicochemical properties of tomato (Solanum lycopersicum L.) powder. Front Sustainable Food Syst, 6, 1-9. http://dx.doi.org/10.3389/fsufs.2022.839385
Dube, J., Ddamulira, G. & Maphosa, M. (2020). Tomato breeding in Sub-Saharan Africa-challenges and opportunities: a review. Afr Crop Sc J, 28(1), 131-140. DOI: https://dx.doi.org/10.4314/acsj.v28i1.10
Dufera, L. T., Hofacker, W. & Esper, A. (2023). Effect of packaging materials on lycopene vitamin C and water activity of dried tomato (Lycopersicon esculentum Mill.) powder during storage. Food Sci Nutri, 11, 6223-6230. http://dx.doi.org/10.1002/fsn3.3562
Dūma, M., Alsina, I., Dubova, L., Gavare, D., & Erdberga, L. (2022). Quality of different coloured tomatoes depending on the growing season. Proceedings of the Latvian Acad Sci, 76(1), 89-95. http://dx.doi.org/10.2478/prolas-2022-0014
Farid, E., Mounir, S., Talaat, E., Elnemr, S. & Siliha, H. (2022). Effect of foaming parameters on the physical and phytochemical properties of tomato powder. Food Sci Biotech, 31, 1423-1431. https://doi.org/10.1007/s10068-022-01125-9
Farooq, S., Rather, S. A., Gull, A., Ganai, S. A., Masoodi, F. A., Wani, S. M. & Ganaie, T. A. (2020). Physicochemical and nutraceutical properties of tomato powder as affected by pretreatments, drying methods, and storage period. Intl J Food Propert, 23(1), 797-808. https://doi.org/10.1080/10942912.2020.1758716
Fish, W. W., Perkins-Veazie, & Collins, J. K. (2002). A quantitative assay for lycopene that utilizes reduced volumes of organic solvents. J Food Comp Analyses, 15, 309-317.
Gameh, M. A., Elwakeel, A. E., Eissa, A. S. & Mostafa, N. B. (2024): Recent advances in solar drying technologies for tomato fruits: a comprehensive review. Intl J Appli Energ Syst, 6(1), 37-44.
Garg, R. K., Batav, N., Silawat, N. & Singh, R. K. (2013). Isolation and identification of pathogenic microbes from tomato puree and their delineation of distinctness by molecular techniques. J Appli Bio Biotech, 1(04), 024-031.
Hameed, O. B., Ahsan, H. & Nissar, N. (2018). Influence of pre-treatments, packaging material and storage on the crude and dietary fiber content of dried tomato slices (variety Punjab Chuhra). Intl J Adv Resear Sci Eng, 7(4), 1913-1918.
Harrigan, W. F. & McCance, M. E. (1976). Laboratory Methods in Food and Diary Microbiology, 2nd Edition, Academic Press Inc. London, 322pp.
Hirata, R., Kojima, K., Teramoto, Y. & Saigusa, N. (2024). Effect of conditions in the production of highly soluble powder from tomatoes using microbial enzyme preparation. Afri J Biochem Resear, 18(1), 1-9. http://dx.doi.org/10.5897/AJBR2024.1182
Hussein, J. B., Usman, M. A. & Filli, K. B. (2016). Effect of hybrid solar drying method on the functional and sensory properties of tomato. Am J Food Sci Tech, 4(5), 141-148. http://dx.doi.org/10.12691/ajfst-4-5-4
Ire, F. S., Benneth, G. K. & Maduka, N. (2020). Evaluation of ready-to-drink tigernut drinks sold within Port Harcourt metropolis, Rivers state, Nigeria. Asian Food Sci J, 16(1), 45-58.
Jayathunge, K. G. L. R., Kapilarathne, R. A. N. S., Thilakarathne, B. M. K. S., Fernando, M. D., Palipane, K. B. & Prasanna, P. H. P. (2012). Development of a methodology for production of dehydrated tomato powder and study the acceptability of the product. J Agric Tech, 8(2), 765-773.
Jones, D., Chinnaswamy, R., Tan, Y. & Hanna, M. (2000). Physiochemical properties of ready-to-eat breakfast cereals. Cereal Foods World, 45, 164-166.
Kaushal, P., Kumar, V. & Sharma, H. K. (2012). Comparative study of physicochemical, functional, anti-nutritional and pasting properties of taro (Colocasia esculenta), rice (Oryza sativa), pigeon pea (Cajanus cajan) flour and their blends. LWT-Food Sci Tech, 48, 59-68.
Kumar, M., Tomar, M., Bhuyan, D. J., Punia, S., Grasso, S., Sá, A. G. A., Carciofi, B. A. M., Arrutia, F., Changan, S., Radha, S. S., Dhumal, S., Senapathy, M., Satankar, V., Anitha, T., Sharma, A., Pandiselvam, R., Amarowicz, R. & Mekhemar, M. (2021). Tomato (Solanum lycopersicum L.) seed: a review on bioactives and biomedical activities. Biomed Pharmacotherapy, 142, 1-18. https://doi.org/10.1016/j.biopha.2021.112018
Kumar, V., Singh, S., Chandra, S., Singh, B. R. & Yadav, A. (2016). Effect of microbial growth on dehydrated tomato powder during different drying conditions. J Pure Appli Microbiol, 10(4), 2997-3002. http://dx.doi.org/10.22207/JPAM.10.4.69
Ladi, O. J., Awod, Y. P., Obogeh, K. A. & Alfa, I. N. (2017). Effect of drying methods and storage conditions on nutritional value and sensory properties of dehydrated tomato powder (Lycopersicon esculentum). Int J Biochem Resear Rev, 19(1), 1-7. http://dx.doi.org/10.9734/IJBCRR/2017/33103
Latapi, G. & Barrett, D. M. (2006). Influence of pre-drying treatments on quality and safety of sun-dried tomatoes. Part I: Use of steam blanching, boiling brine blanching and dips in salt or sodium metabisulphite. J Food Sci, 71, 1-20.
Leke, L. & Bembur, K. (2023). Effect of pre-treatment methods on the quality attributes of tomato powder. Nig Annals Pure Appli Sci, 6(1), 29-41.
Lyu, X., Ying, D., Zhang, P. & Fang, Z. (2024). Effect of whole tomato powder or tomato peel powder incorporation on the colour, nutritional, and textural properties of extruded high moisture meat analogues. Food Bioproc Tech, 17, 231-244. https://doi.org/10.1007/s11947-023-03133-x
Masamba, K. G., Mkandawire, M., Chiputula, J. & Nyirenda, K. S. (2013). Evaluation of sensory quality attributes and extent of vitamin C degradation in dried pineapple, mango, and banana fruit pieces pre–treated with sodium metabisulphite and lemon juice. Int Res J Agric Sc Soil Sci, 3(3), 75-80.
Mateo-Roque, P., Morales-Camacho, J. I., Jara-Romero, G. J., Rosas-Cárdenas, F. F., Huerta-González, L. & Luna-Suárez (2024): Supercritical CO2 treatment to modify techno-functional properties of proteins extracted from tomato seeds. Foods, 13, 1045. https://doi.org/10.3390/foods13071045
Nanelo, R. F. & José, A. E. (2023). Variation of physicochemical characteristics of tomato under different traditional forms of conservation. Int J Food Studies, 12, 112-122. http://dx.doi.org/10.7455/ijfs/12.1.2023.a8
Narayana, K. & Narsinga, R. M. S. (1982). Functional properties of war and heat processed winged bean (Psophocarpus tetragonolobus) flour. J Food Sci, 42, 534-538.
Nishizono, M., Issasi, C. S. C., Agutaya, J. K. C. N., Sasaki, M. & Mizukami, H. (2023). Production of dried tomato powder with a high concentration of functional components and nutrients. J Antioxid Act, 2(4), 1-21. http://dx.doi.org/10.14302/issn.2471-2140.jaa-23-4426
Obadina, A., Ibrahim, J. & Adekoya, I. (2018). Influence of drying temperature and storage period on the quality of cherry and plum tomato powder. Food Sci Nutri, 6, 1146-1153. https://dx.doi.org/10.1002/fsn3.658
Obajemihi, O. I., Cheng, J. H. & Sun, D. W. (2024). Novel cold plasma functionalized water pretreatment for improving drying performance and physicochemical properties of tomato (Solanum lycopersicum L.) fruits during infrared-accelerated pulsed vacuum drying. J Food Eng, 379, 1-13. https://doi.org/10.1016/j.jfoodeng.2024.112050
Obiaocha-Nwaogwugwu, C. N., Eruteya, O. C. & Ahaotu, I. (2024). Shelf-life extension of tomatoes (Solanum lycopersicum), okra (Abelmoschus esculentus) and eggplant (Solanum melongena) using edible coating. Scientia Africana, 23(2), 375-388. https://dx.doi.org/10.4314/sa.v23i2.35
Oboulbiga, E. B., Parkouda, C., Dabiré, C., Aimée, W. D., Guissou, B., Traore, K., Semde, Z., Douamba, Z., Sawadogo-Lingani, H. & Dicko, M. H. (2022). Storage stability of dried tomato slices during storage as affected by salt and lemon pretreatments. Intl J Food Properties, 25(1), 450-462. https://doi.org/10.1080/10942912.2022.2046051
Ogunsola, O. A. & Ogunsina, G. A. (2021). Tomato production and associated stress: a case of African climate. Single Cell Bio, 10(4), 1-5.
Oladipupo, R. A., Yusuf, K. A. & Salawu, G. (2020). Effect of storage materials on the proximate composition of tomato (Lycopersicon esculentum) powder. FUDMA J Sci, 4(2), 203-206. https://dx.doi.org/10.33003/fjs-2020-0402-212
Ossamulu, I. F., Akanya, H. O., Egwim, E. C. & Kabiru, A. Y. (2023). Improvement of shelf-life and nutrient quality of tomatoes and eggplant fruits using chitosan-starch composite coat. Acta Sci Pol Technol Aliment, 22(1), 43-55. http://dx.doi.org/10.17306/J.AFS.2023.1092
Owureku-Asare, M., Oduro, I., Saalia, F. K., Tortoe, C., Ampah, J. & Ambrose, K. (2022). Drying characteristics and microbiological quality assessment of sun-dried tomato. Intl J Food Sci, 1-13. https://doi.org/10.1155/2022/2352327
Panagiotou, N. M., Karathanos, V. T. & Maroulis, Z. B. (1998). Mass transfer modeling of the osmotic dehydration of some fruits. Int. J Food Sci Tech, 33(3), 267-284.
Ramya, H. N., Ashwini, A., Veena, B., Fazal, A. A. & Hanumanthraju, K. N. (2017): Influence of different drying techniques on dehydrated tomato powder. Int. J Creative Resear Thoughts, 5(3), 474-482.
Ranjan, S. K. & Shankar, P. (2024). Study on physiochemical and nutritional properties of tomato powder dried in solar dryer and dehydrator. Int J Res Publ Rev, 5(7), 1512-1517.
Samson, R. A. & Van-Reenen-Hockstra (1988). Introduction of Food Borne Fungi, 2nd Edition, Centroalbureau Voor Schimmel cultures, Baam. The Netherlands, pp. 299.
Sarker, M., Hannan, M. A., Quamruzzaman, M. A. A. & Khatun, H. (2014). Storage of tomato powder in different packaging materials. J Agri Tech, 10(3), 595-605.
Silva, F. D., Garcia, V. A. S., Vanin, F. M., Yoshida, C. M. P. & Carvalho, R. A. (2023). Application of tomato byproduct in food products-a review. Food Sci Eng, 4(1), 103-115. http://ojs.wiserpub.com/index.php/FSE/
Sosulski, F. W., Garatt, M. O. & Slinkard, A. E. (1976). Functional properties of ten legume flours. Intl J Food Sci Tech, 9, 66-69.
Suleiman, H. A., Owuna, J. E., Makut, M. D., Yahaya, I., Ekeleme, I. K., Abdullahi, Z. T. (2023): Assessment of mycotoxin producing fungi isolated from dried tomato chips sold in Keffi, Nigeria. World J Adv Eng Tech Sci, 9(02), 235-241. https://doi.org/10.30574/wjaets.2023.9.0222
Tafida, I., Idris, A. A., Ashura, B. A. & Nasiru, A. (2023). Analysis of adoption of tomato post-harvest technologies among smallholder farmers in Katsina State, Nigeria. FUW Trends Sci Tech J, 8(2), 413-418.
Xu, Q., Adyatni, I. & Reuhs, B. (2018). Effect of processing methods on the quality of tomato products. Food Nutri Sci, 9, 86-98. http://www.scirp.org/journal/fns
Yadav, A. K. & Ali, Z. (2023). Modern drying techniques in fruits and vegetables to reduce postharvest losses. Indian Farmer, 10(03), 101-104.
Yasumatsu, K., Sawada, K., Maritaka, S., Toda, J., Wada, T. & Ishi, K. (1972). Whipping and emulsifying properties of soy bean products. Agric Bio Chem, 36, 719-727.
Yegrem, L. & Dagnaw, L. A. (2022). Pretreatments, dehydration methods and packaging materials: effects on the nutritional quality of tomato powder: a review. Archive Food Nutri Sci, 6:050-061. https://dx.doi.org/10.29328/journal.afns.1001038
Yegrem, L. & Ababele, L. (2022). Pretreatments, dehydration methods and packaging materials: effects on the nutritional quality of tomato powder. Austin J Nutri Food Sci, 10(2), 1-11.
Yusuf, Y., Engin, D. & Yahya, T. (2013). Degradation kinetics of lycopene, β-carotene and ascorbic acid in tomatoes during hot air drying. LWT-Food Sci Tech, 50, 172-176.
Zambare, A. V. & Kulkarni, D. A. (2023). Experimental investigation on drying of tomato slices. J Pharmacog Phytochem, 12(6), 11-19.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Studia Universitatis Babeș-Bolyai Biologia

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.