The control of Cydia pomonella (L.) (Lepidoptera, Tortricidae) population using sugars under semi-arid climate (Batna, Algeria)
DOI:
https://doi.org/10.24193/subbbiol.2025.1.07Keywords:
Codling-moth, Fruit damage, Apple, Sucrose, FructoseAbstract
The codling moth remains the main pest of apples in the Batna region of Algeria and causes heavy damage to apple orchards. This paper aims to show the possibility of using insecticide (Thiacloprid which may provide selective control tools) and sugar (which may induce multiple systemic resistances) to control Cydia pomonella. The field trials were carried out on the “Anna” apple tree cultivar in Tilatou (Batna, Algeria). The efficacy of sucrose and fructose (100 ppm), in comparison to Thiacloprid (25 mL ha-1), was assessed based on the proportion of fruits that larvae destroyed, the quantity of larvae gathered in corrugated cardboard, and the quantity of male moths trapped in pheromone traps. This study showed that all tested products reduced fruits damaged by Cydia pomonella. Treatments by sucrose and fructose provide percentages of damaged fruits at rates of 8.44±0.64 and 7.57±1.25, respectively, vs. 36.35±3.00 for untreated trees. The treatments also affected the number of larvae caught in bands of corrugated cardboard. Foliar spraying in the morning with sugar (every 20 days) can be an alternative method to manage the codling moth population. The use of sugars is a novel method in the plant protection strategy. These results constitute an interesting alternative to classical approaches offered by the opportunity to reduce the rate of chemical insecticides required for effective pest management.
Article history: Received 30 August 2024; Revised 2 April 2025;
Accepted 26 May 2025; Available online 25 June 2025
References
Abbott, W. S., (1925). A method of computing effectiveness of an insecticide. J Econ Entomol, 18, 265-267. https://doi.org/10.1093/jee/18.2.265a
Ahanger, M. A., Tyagi, S. R, Wani M.R., & Ahmad, P. (2013). Drought tolerance: role of organic osmolytes, growth regulators, and mineral nutrients. In: Physiological Mechanisms and Adaptation Strategies in Plants Under Changing Environment, Volume 1, Parvaiz A. and Wani M. R. (ed.), Springer, pp. 25-55. https://doi.org/10.1007/978-1-4614-8591-9_2
Ahmad, I. Z. (2019). Role of sugars in abiotic stress signaling in plants. In: Plant Signaling Molecules, Woodhead Publishing (ed.), pp. 207-217. https://doi.org/10.1016/B978-0-12-816451-8.00039-3
Ali, M.A., Abdellah, I.M., & Eletmany, M.R. (2023). Towards Sustainable Management of Insect Pests: Protecting Food Security through Ecological Intensification. IJCBS, 24(4), 386-394.
Arnault, I., Aveline, N., Bardin, M., Brisset, M.N., Carriere, J., Chovelon, M., Delanoue, G., Furet, A., Frérot, B., Lambion, J., Ondet, S., Marchand, P., Desmoucaux, N., Romet, L., Thibord, J.B., & Trouvelot, S. (2021). Optimisation des stratégies de bio contrôle par la stimulation de l’immunité des plantes avec des applications d’infra-doses de sucres simples. [in Frensh]. Innovations Agronomiques, 82, 411-423.
Arnault, I., Bardin, M., Ondet, S., Furet, A., Chovelon, M., Kasprick, A.C., Marchand, P., Clerc, H., Davy, M., Roy, G., Romet, L., Auger, J., Mançois, A. & Derridj, S. (2015). Utilisation de micro-doses de sucres en protection des plantes. [in Frensh]. Innovations Agronomiques, 46, 1-10.
Arnault, I., Lombarkia, N., Joy-Ondet, S., Romet, L., Brahim, I., Meradi, R., Nasri, A., Auger, J., & Derridj, S. (2016). Foliar application of microdoses of sucrose to reduce codling moth Cydia pomonella L. (Lepidoptera: Tortricidae) damage to apple trees. Pest Manage Sci, 72, 1901–1909. https://doi.org/10.1002/ps.4228
Baranek, J., Banaszak, M., Kaznowski, A., & Lorent, D. (2021). A novel Bacillus thuringiensis Cry9Ea-like protein with high insecticidal activity towards Cydia pomonella larvae. Pest Manage Sci, 77, 1401-1408. https://doi.org/10.1002/ps.6157
Bertea, C., M., Casacci, L., P., Bonelli, S., Zampollo, A., & Barbero, F. (2020). Chemical, physiological and molecular responses of host plants to lepidopteran egg-laying. Front Plant Sci, 10, 1768. https://doi.org/10.3389/fpls.2019.01768
Cabanat, I. (1999). Étude du comportement de recherche du site alimentaire par les chenilles néonates de Cydia pomonella L. lépidoptère ravageur des pommes et des poires en relation avec les médiateurs biochimiques présents à la surface des organes végétaux du pommier. [in Frensh]. Mémoire de DEA. Université Paris-Nord. France, 25p.
Cahill, P.L., Davidson, I.C., Atalah, J.A., Cornelisen, C., & Hopkins, G. A. (2022). Toward integrated pest management in bivalve aquaculture. Pest Manage Sci, 78, 4427-4437. https://doi.org/10.1002/ps.7057
Choudhary, A., Kumar, A., Kaur, N., & Kaur, H. (2022). Molecular cues of sugar signaling in plants. Physiol Plant, 174(1), e13630. https://doi.org/10.1111/ppl.13630
Chouinard, G., Firlej, A. ,& Cormier, D. (2016). Going beyond sprays and killing agents: Exclusion, sterilization anddisruption for insect pest control in pome and stone fruit orchards. Sci Hortic, 208, 13–27. https://doi.org/10.1016/j.scienta.2016.03.014
Costantini, E., & La Torre, A. (2022). Regulatory framework in the European Union governing the use of basic substances in conventional and organic production. J Plant Dis Prot, 129, 715-743. https://doi.org/10.1007/s41348-022-00569-9
Damos, P., & Soulopoulou, P. (2019). Stage‐specific probabilistic phenology model of Cydia pomonella (Lepidoptera: Tortricidae) using laboratory maximum likelihood parameter estimates. J Appl Entomol, 143, 250-261. https://doi.org/10.1111/jen.12589
Derridj, S., Arnault, I., Lombakia, N., Ferre, E., Galy, H., Lambion, J., & Auger, J. (2011). Les sucres solubles utilisés comme inducteurs de résistance de la plante aux bio-agresseurs. [in Frensh]. Quatrième conférence internationale sur les méthodes alternatives en protection des cultures, Lille - 8, 9, 10 mars 2011, 383-388.
Derridj, S., Lombarkia, N., Garrec, J. P., Galy, H., & Ferre, E. (2012). Sugars on leaf surfaces used as signals by the insect and the plant: implications in orchard protection against Cydia pomonella L. (Lepidoptera, Tortricidae). In: Moths: Types, Ecological Significance and Control, ed. By Cauterrucio L. Nova Science Publishers Inc., Hauppage, NY, pp. 1–38.
El Iraqui, S., & Hmimina, M. (2016a). Assessment of control strategies against Cydia pomonella (L.) in Morocco. J Plant Prot Res, 56(1), 82-88. https://doi.org/10.1515/jppr-2016-0012
El Iraqui, S., & Hmimina, M. (2016b). Impact of temperatures on the voltinism of Cydia pomonella (Lepidoptera: Tortricidae). Ann Entomol Soc Am, 109, 698–704. https://doi.org/10.1093/aesa/saw046
Eliceche, D., Rusconi, M., Rosales, M., Rossi, J., Salas, A., Macagno, C., D’Hervé, F., Silvestre, C., & Achinelly, F. (2023). The efficacy of Steinernema feltiae in the control of Cydia pomonella in organic apple and pear orchards of Patagonia Argentina and its impact on local populations of entomopathogenic nematodes. BioControl, 68, 459-470. https://doi.org/10.1007/s10526-023-10198-2
Formela-Luboińska, M., Remlein-Starosta, D., Waskiewicz, A.,Karolewski, Z., Bocianowski, J., Stepien, L., Labudda, M., Jeandet, P., & Morkunas, I. (2020). The role of saccharides in the mechanisms of pathogenicity of Fusarium oxysporum f. sp. lupini in yellow lupine (Lupinus luteus L.). Int J Mol Sci, 21, 7258. https://doi.org/10.3390/ijms21197258
Garczynski, S.F., Hendrickson, C.A., Harper, A., Unruh, T.R., Dhingra, A., Ahn, S.J., & Choi, M.Y. (2019). Neuropeptides and peptide hormones identified in codling moth, Cydia pomonella (Lepidoptera: Tortricidae). Arch. Insect Biochem. Physiol, 101, e21587. https://doi.org/10.1002/arch.21587
Gomez, M.P., Barud, F.J., Diaz, A., & Lopez, M.L. (2023). Oviposition and olfactometry response of codling moth (Cydia pomonella) to quince (Cydonia oblonga) cultivars. J Appl Entomol, 147, 307-312. https://doi.org/10.1111/jen.13113
Guo, W.J., Pommerrenig, B., Neuhaus, H.E., & Keller, I. (2023). Interaction between sugar transport and plant development. J Plant Physiol, 288, 154073. https://doi.org/10.1016/j.jplph.2023.154073
Guermah, D., & Medjdoub-Bensaad, F. (2016). Population dynamics of the codling moth Cydia pomonella (Lepidoptera: Tortricidae) on two apple varieties in Algeria. Int J Bio Res Dev, 6, 1-8.
Gupta, R.C., Mukherjee, I.R.M., Malik, J.K., Doss, R.B., Dettbarn, W.-D., & Milatovic, D. (2019). Insecticides. In: Biomarkers in toxicology, Ramesh C. Gupta (eds.), Academic Press, 455–475. https://doi.org/10.1016/B978-0-12-814655-2.00026-8
Gutiérrez-Gamboa, G., Zheng, W., & Martinez de Toda, F. (2021). Strategies in vineyard establishment to face global warming in viticulture: A mini review. J Sci Food Agric, 101, 1261-1269. https://doi.org/10.1002/jsfa.10813
Hill, G.M., Kawahara, A.Y., Daniels, J.C., Bateman, C.C., & Scheffers, B.R. (2021). Climate change effects on animal ecology: butterflies and moths as a case study. Biol Rev, 96, 2113-2126. https://doi.org/10.1111/brv.12746
Ju, D., Liu, Y.-X., Liu, X., Dewer, Y., Mota-Sanchez, D., & Yang, X.-Q. (2023). Exposure to lambda-cyhalothrin and abamectin drives sublethal and transgenerational effects on the development and reproduction of Cydia pomonella. Ecotoxicol Environ Saf, 252, 114581. https://doi.org/10.1016/j.ecoenv.2023.114581
Kadoić Balaško, M., Bažok, R., Mikac, K.M., Lemic, D., & Pajac Zivkovic, I. (2020). Pest management challenges and control practices in codling moth: A review. Insects, 11(38), 1-22. https://doi.org/10.3390%2Finsects11010038
Kaplan, M. (2023). Determination of population change and damage rate of the harmful codling moth (Cydia pomonella Linnaeus) (Lepidoptera: Tortricidae) in apple orchards in malatya province, Türkiye. Erwerbs-Obstbau, 65, 1285-1290. https://doi.org/10.1007/s10341-023-00882-z
Mahendiran, G., Lal, S., & Sharma, O. (2022). Pests and Their Management on Temperate Fruits: (Apple, Pear, Peach, Apricot, Cherry, Persimmon, Walnut, Olive, Kiwifruit and Strawberry). In: Trends in Horticultural Entomology, Springer Singapore, pp. 891-941. https://doi.org/10.1007/978-981-19-0343-4_36
Moghaddam, M.R.B., & den Ende, W.V. (2013). Sweet immunity in the plant circadian regulatory network. J Exp Bot, 64, 1439-1449. https://doi.org/10.1093/jxb/ert046
Moghaddam, M.R.B., & den Ende, W.V. (2012). Sugars and plant innate immunity. J Exp Bot, 63, 3989-3998. https://doi.org/10.1093/jxb/ers129
Nelson, C., Esch, E., Kimmie, S., Tesche, M., Philip, H., & Arthur, S. (2021). Putting the sterile insect technique into the modern integrated pest management toolbox to control the codling moth in Canada. [in Frensh]. In: Area-Wide Integrated Pest Management, J. Hendrichs, R. Pereira and M. J. B. Vreysen (eds.), CRC, Boca-Raton, pp. 111-127. doi:10.1201/9781003169239-7
Preininger, C., Sauer, U., Bejarano, A., & Berninger, T. (2018). Concepts and applications of foliar spray for microbial inoculants. Appl Microbiol Biotechnol, 102, 7265-7282. https://doi.org/10.1007/s00253-018-9173-4
Rani, L., Thapa, K., Kanojia, N., Sharma, N., Singh, S., Grewal, A.S., Srivastav, A.L., & Kaushal, J. (2021). An extensive review on the consequences of chemical pesticides on human health and environment. J Cleaner Prod, 283, 124657. https://doi.org/10.1016/j.jclepro.2020.124657
Saddhe, A.A., Manuka, R., & Penna, S. (2021). Plant sugars: Homeostasis and transport under abiotic stress in plants. Physiol Plant, 171, 739-755. https://doi.org/10.1111/ppl.13283
Shayestehmehr, H., Karimzadeh, R., Feizizadeh, B. & Iranipour, S. (2021). Spatial distribution of Cydia pomonella (Lepidoptera: Tortricidae) populations and its relation with topographic variables. Appl Entomol Zool. 56, 187-197. https://doi.org/10.1007/s13355-020-00722-6
Tarkowski L.P., Poel B.V., Hofte M., & Ende W.V. (2019). Sweet Immunity: Inulin Boosts Resistance of Lettuce (Lactuca sativa) against Grey Mold (Botrytis cinerea) in an Ethylene-Dependent Manner. Int J Mol Sci, 20, 1052. https://doi.org/10.3390/ijms20051052
Trouvelot, S., Héloir M.C., Poinssot B., Gauthier A., Paris, F., Guillier, C., Combier, M., Trda, L., Daire X., & Adrian M. (2014). Carbohydrates in plant immunity and plant protection: roles and potential application as foliar sprays. Front Plant Sci, 4, 1-14.
Tun, W., Yoon, J., Vo, K.T.X., Cho, L.-H., Hoang, T.V., Peng, X., Kim, E.-J., Win, K.T.Y.S., Lee, S.-W., & Jung, K.-H. (2023). Sucrose preferentially promotes expression of OsWRKY7 and OsPR10a to enhance defense response to blast fungus in rice. Front Plant Sci, 14, 1117023. https://doi.org/10.3389/fpls.2023.1117023
Unruh, T.R., Miliczky, E.R., Horton, D.R., Thomsen-Archer, K., Rehfield-Ray, L., & Jones, V.P. (2016). Gut content analysis of arthropod predators of codling moth in Washington apple orchards. Biol Control, 102, 85-92. https://doi.org/10.1016/j.biocontrol.2016.05.014
Vrieling, K., & Derridj, S. (2003). Pyrrolizidine alkaloids in and on the leaf surface of Senecio jacobaea L. Phytochemistry, 64, 1223-1228.
Windley, M.J., Vetter, I., Lewis, R.J., & Nicholson, G.M. (2017). Lethal effects of an insecticidal spider venom peptide involve positive allosteric modulation of insect nicotinic acetylcholine receptors. Neuropharmacology, 127, 224-242. https://doi.org/10.1016/j.neuropharm.2017.04.008
Xi, Y., Xing, L., Wennmann, J. T., Fan, J., Li, Z., Wu, Q., Lu, S., Liu, B., Guo, J., Qiao, X., Huang, C., Qian, W., Jehle, J. A., & Wan, F., (2021). Gene expression patterns of Cydia pomonella granulovirus in codling moth larvae revealed by RNAseq analysis. Virology, 558, 110-118. https://doi.org/10.1016/j.virol.2021.02.015
Xie, J., Deng, B., Wang, W., & Zhang, H. (2023). Changes in sugar, organic acid and free amino acid levels and the expression of genes involved in the primary metabolism of oleocellosis in citrus peels. J Plant Physiol, 280, 153-877. https://doi.org/10.1016/j.jplph.2022.153877
Xu, Z., Xu, L., & Hu, X. (2022). Genomic analysis of sugar transporter genes in peanut (Arachis hypogaea): Characteristic, evolution and expression profiles during development and stress. Oil Crop Science, 7, 189-199. https://doi.org/10.1016/j.ocsci.2022.11.002
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Studia Universitatis Babeș-Bolyai Biologia

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.