Seed dormancy and germination in Sophora secundiflora (Fabaceae)
DOI:
https://doi.org/10.24193/subbbiol.2024.2.04Keywords:
coat dormancy, germination, mescal-bean, Sophora secundiflora, scarificationAbstract
Given the ecological and horticultural significance of Sophora secundiflora (Ortega) DC., effective dormancy-breaking techniques are crucial for enhancing its cultivation and ensuring successful establishment in both natural and managed environments. Seeds have an extremely hard and water impermeable testa. This study evaluated the effects of mechanical scarification, sulphuric acid soaking for 30, 60 and 90 minutes and hydrogen peroxide soaking for 10 and 20 minutes on final germination percentage (FGP), mean germination time (MGT), time to 50% germination (T50) and coefficient of velocity of germination (CVG). Mechanical scarification and 60-minute sulphuric acid treatments were the most effective, achieving FGPs of 95% and 93%, respectively, and showing efficient germination processes as indicated by T50 and CVG metrics. Mechanical scarification resulted in the fastest and most consistent germination. Sulphuric acid treatments showed time-dependent efficacy, with the 60-minute treatment optimising both germination speed and percentage, whereas the 90-minute treatment caused potential seed damage, reflected in a poorer FGP. Hydrogen peroxide treatments were less effective overall, with a maximum FGP of 33% for the 20-minute soaking. Statistical analyses highlighted significant differences among treatments, particularly for FGP (p < 0.0001), T50 (p = 0.0020) and CVG (p = 0.0348). These findings support the role of physical and chemical scarification in breaking dormancy in Fabaceae seeds, offering valuable insights to optimise germination protocols for S. secundiflora and similar species.
Article history: Received 3 June 2024; Revised 13 November 2024;
Accepted 13 November 2024; Available online 10 December 2024
References
Aly, S.H., Elissawy, A.M., Eldahshan, O.A., Elshanawany, M.A. & Singab, A.N.B. (2020). Variability of the chemical composition of the essential oils of flowers and the alkaloid contents of leaves of Sophora secundiflora and Sophora tomentosa. J. Essent. Oil-Bear. Plants, 23(3), 442-452. Doi: 10.1080/0972060x.2020.1750489
Baskin, C.C. & Baskin, J.M. (1998). Germination Ecology of Seeds with Physical Dormancy. Seeds, 101-132. Doi: 10.1016/b978-012080260-9/50006-3
Baskin, C.C. & Baskin, J.M. (2020). Breaking seed dormancy during dry storage: a useful tool or major problem for successful restoration via direct seeding?. Plants, 9(5), 636. Doi: 10.3390/plants9050636
Baskin, J.M., Baskin, C.C. & Li, X. (2000). Taxonomy, anatomy and evolution of physical dormancy in seeds. Plant Species Biol., 15(2), 139-152. Doi: 10.1046/j.1442-1984.2000.00034.x
Bhatla, S.C. & Lal, M.A. (2023). Seed dormancy and germination. In Plant Physiology, Development and Metabolism (pp. 625-640). Singapore: Springer Nature Singapore. Doi: 10.1007/978-981-99-5736-1_28
Côme, D. (1970). Les obstacles to germination. Masson et Cie (Paris), 14, 24-27.
Coolbear, P., Francis, A. & Grierson, D. (1984). The effect of low temperature pre-sowing treatment on the germination performance and membrane integrity of artificially aged tomato seeds. J. Exp. Bot., 35(11), 1609-1617. Doi: 10.1093/jxb/35.11.1609
Correll, D.S. & Johnston, M.C. (1970). Manual of the Vascular Plants of Texas. Texas Research Foundation, Renner, Texas, 1881 p.
Dalling, J.W., Davis, A.S., Arnold, A.E., Sarmiento, C. & Zalamea, P.C. (2020). Extending plant defense theory to seeds. Annu. Rev. Ecol. Syst., 51, 123-141. Doi: 10.1146/annurev-ecolsys-012120-115156
Fenner, M. (2017). Ecology of seed banks. Seed Development and Germination, 507–528. Doi: 10.1201/9780203740071-19
Fu, Y., Yao, W., Li, S. & Li, H. (2016). Improvement of seed germination and in vitro propagation of a multipurpose plateau shrub species Sophora moorcroftiana. Pak. J. Bot., 48(4), 1439-1445.
Ihtisham, M., Amjad, N., Nauman, M., Ali, A., Riaz, K., Sajid, M. & Shahid, M.O. (2021). Germination, Winter Survival and Plant Growth of Sophora secondiflora as Affected by Sowing Dates and Seed Scarification. Sarhad J. Agric., 37(2). Doi: 10.17582/journal.sja/2021/37.2.456.467
Jaganathan, G.K. & Biddick, M. (2021). Experimental warming hastens physical dormancy break and germination in tropical Fabaceae. Front. Plant Sci., 12, 782706. Doi: 10.3389/fpls.2021.782706
Jara-Peña, E. & Marín-Bravo, M. (2023). The Role of the Internal Structure of Fabaceae Seeds in the Processes of Dormancy and Germination. In Production and Utilization of Legumes-Progress and Prospects. IntechOpen.
Doi: 10.5772/intechopen.109627
Jordan, J.A. (2014). Plains apache ethnobotany. University of Oklahoma Press. J. Herit. Manag., 2(1), 138-139.
Khan, M. N., Ali, S., Yaseen, T., Ullah, S., Zaman, A., Iqbal, M. & Shah, S. (2019). Eco-Taxonomic Study of Family Poaceae (Gramineae). RADS J. Biol. Res. Appl. Sci., 10, 63–75. Doi: 10.37962/jbas.v10i2.191
Kheloufi, A. (2022). Inventory, description and germination of woody fodder resources of the genus Acacia in Algeria – Data synthesis. L. R. R. D., 34(3).
Kheloufi, A. (2024). Breaking seed dormancy dormancy in Searsia pentaphylla (Anacardiaceae). S. S. T., 52, 3, 303-308. Doi: 10.15258/sst.2024.52.3.07
Kheloufi, A., Mansouri, L.M., Aziz, N., Sahnoune, M., Boukemiche, S. & Ababsa, B. (2018). Breaking seed coat dormancy of six tree species. Reforesta, 5, 4-14. Doi: 10.21750/refor.5.02.48
Kheloufi, A., Mansouri, L.M., Bouafia, B., Khamari, Y., Kheloufi, H. & Bouguern, Y. (2019). Morphological characteristics and seed germination improvement of two ecotypes of Astragalus armatus Willd. subsp. armatus in Algeria. Cercetări Agronomice în Moldova, 51(4), 96-107. Doi: 10.2478/cerce-2018-0039
Kheloufi, A., Mansouri, L.M., Djelilate, M., Touka, M., Chater, A., & Dekhinet, C. (2020). Nutritional Characteristics and Seed Germination Improvement of the Forage Shrub Retama sphaerocarpa (L.) Boiss. Contemporary Agriculture, 69(3-4), 53-60. Doi: 10.2478/contagri-2020-0008
Kildisheva, O.A., Davis, A.S., & Hamzeh, B.A. (2013). A hard seed to crack evaluating dormancy-breaking techniques for Mamane. Native Plants Journal, 14(3), 243-248. Doi: 10.3368/npj.14.3.243
Kildisheva, O.A., Dixon, K.W., Silveira, F.A., Chapman, T., Di Sacco, A., Mondoni, A., Turner, S.R. & Cross, A.T. (2020). Dormancy and germination: making every seed count in restoration. Restor. Ecol., 28, 256-265. Doi: 10.1111/rec.13140
Lamont, B.B. & Pausas, J.G. (2023). Seed dormancy revisited: Dormancy‐release pathways and environmental interactions. Funct. Ecol., 37(4), 1106-1125. Doi: 10.1111/1365-2435.14269
Mansouri L.M. & Kheloufi A. (2021). Seed germination improvement of Anagyris foetida L. an autumn-winter flowering Mediterranean shrub. L. R. R. D., 33(12).
Mansouri L.M. & Kheloufi A. (2023). Improvement of germination in Retama sphaerocarpa and Ziziphus lotus for the rehabilitation of degraded rangelands in Algeria. Annals of "Valahia" University of Târgovişte. Agriculture, 15(1), 18-21. Doi: 10.2478/agr-2023-0005
Naik, I.S., & Deshpande, V.K. (2021). Seed coat dormancy: An overview in legumes. J. Pharm. Innov., 10(11), 620-624.
Nautiyal, P.C., Sivasubramaniam, K. & Dadlani, M. (2023). Seed dormancy and regulation of germination. S. S. T., 39-66. Doi: 10.1007/978-981-19-5888-5_3
Niu, G., Rodriguez, D. & Gu, M. (2011). Response of Sophora secundiflora to nitrogen form and rate. Hort. Sci., 46(9), 1303-1307. Doi: 10.21273/hortsci.46.9.1303
Oono, R., Schmitt, I., Sprent, J.I. & Denison, R.F. (2010). Multiple evolutionary origins of legume traits leading to extreme rhizobial differentiation. New Phytol., 187(2), 508-520. Doi: 10.1111/j.1469-8137.2010.03261.x
Orchard, T. (1977). Estimating the parameters of plant seedling emergence. S. S. T., 5, 61-69.
Rehmani, M.S., Aziz, U., Xian, B. & Shu, K. (2022). Seed dormancy and longevity: a mutual dependence or a trade-off?. Plant Cell Physiol., 63(8), 1029-1037. Doi: 10.1093/pcp/pcac069
Shiferaw, W., Demissew, S. & Bekele, T. (2018). Ecology of soil seed banks: Implications for conservation and restoration of natural vegetation: A review. I. J. P. E., 10(10), 380-393. Doi: 10.5897/ijbc2018.1226
Sirkeck, D. & Singh, B. (2023). Improving germination and dormancy breaking in Gleditsia triacanthos L. seeds by presowing treatments. J. Pharm. Innov., 12(2), 2137-2141.
Steinbrecher, T. & Leubner-Metzger, G. (2017). The biomechanics of seed germination. J. Exp. Bot., 68(4), 765-783. Doi: 10.1093/jxb/erw428
Tang, L., Baskin, C., Baskin, J., Luo, K., Yu, X., Huang, W., Zhang, R. & Chen, Y. (2022). Methods of breaking physical dormancy in seeds of the invasive weed Mimosa pudica (Fabaceae) and a comparison with 36 other species in the genus. PeerJ, 10, e13567. Doi: 10.7717/peerj.13567
Taylor, C.Α. & Ralphs, M.Η. (2019). The importance of poisonous plants as forages in the prairies and Southwest. In the ecology and economic impact of poisonous plants on livestock production (pp. 363-375). CRC Press. Doi: 10.1201/9780429310225-26
Wang, Y.T. (1991). Enhanced germination of Sophora secundiflora seeds. Subtropical Plant Science, 44, 37-39.
Zandi, P., Basu, S.K., Khatibani, L.B., Balogun, M.O., Aremu, M.O., Sharma, M., Kumar, A., Sengupta, R., Li, X., Li, Y., Tashi, S., Hedi, A. & Cetzal-Ix, W. (2015). Fenugreek (Trigonella foenum-graecum L.) seed: a review of physiological and biochemical properties and their genetic improvement. Acta Physiol. Plant, 37, 1-14. Doi: 10.1007/s11738-014-1714-6
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Studia Universitatis Babeș-Bolyai Biologia
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.