Assessment of circulating biomarkers in a rat model of doxorubicin-induced cardiotoxicity
DOI:
https://doi.org/10.24193/subbbiol.2024.2.01Keywords:
CTRCD, CTOX, DOX, doxorubicin, circulating biomarkersAbstract
The number of cancer survivors is increasing as cancer therapies become more and more effective. As a consequence, cardio-oncology is nowadays more shifted towards detecting and treating conditions such as CTOX, which refers to heart damage as a result of cancer treatment. Currently, a standardized way of evaluating and monitoring CTOX does not exist, and patients undergo nonspecific and lengthy tests, so they are often diagnosed when heart damage is irreversible. Thus, we assessed a panel of circulating biomarkers that can be used to monitor time-dependent changes in Wistar rats treated with conventional or liposomal DOX. After validation this panel might be applied in clinics to enhance accuracy of screening patients undergoing DOX-based therapy approaches.
Article history: Received 07 November 2024; Revised 04 December 2024;
Accepted 04 December 2024; Available online 10 December 2024
References
Abdulkareem Aljumaily, S. A., Demir, M., Elbe, H., Yigitturk, G., Bicer, Y. & Altinoz, E. (2021). Antioxidant, anti-inflammatory, and anti-apoptotic effects of crocin against doxorubicin-induced myocardial toxicity in rats. Environ Sci Pollut R, 28(46), 65802-65813. https://doi.org/10.1007/s11356-021-15409-w
Ahmad, A., Imran, M. & Ahsan, H. (2023). Biomarkers as biomedical bioindicators: approaches and techniques for the detection, analysis, and validation of novel biomarkers of diseases. Pharmaceutics 15(6), 1630. https://doi.org/10.3390/pharmaceutics15061630
Arunachalam, S., Tirupathi Pichiah, P. B. & Achiraman, S. (2013). Doxorubicin treatment inhibits PPARγ and may induce lipotoxicity by mimicking a type 2 diabetes-like condition in rodent models. FEBS Lett, 587(2), 105-10. https://doi.org/10.1016/j.febslet.2012.11.019
Belger, C., Abrahams, C., Imamdin, A. & Lecour, S. (2024). Doxorubicin-induced cardiotoxicity and risk factors. Int J Cardiol Heart Vasc, 50, 101332. https://doi.org/10.1016/j.ijcha.2023.101332
Bhatnagar, R., Dixit, N. M., Yang, E. H. & Sallam, T. (2022). Cancer therapy’s impact on lipid metabolism: mechanisms and future avenues. In Front Cardiovasc Med, 9, 925816. https://doi.org/10.3389/fcvm.2022.925816
Bisoc, A., Ciurescu, D., Rǎdoi, M., Tântu, M. M., Rogozea, L., Sweidan, A. J. & Bota, D. A. (2020). elevations in high-sensitive cardiac troponin t and n-terminal prohormone brain natriuretic peptide levels in the serum can predict the development of anthracycline-induced cardiomyopathy. Am J Ther, 27(2), e142-e150. https://doi.org/10.1097/MJT.0000000000000930
Bloom, M. W., Hamo, C. E., Cardinale, D., Ky, B., Nohria, A., Baer, L., Skopicki, H., Lenihan, D. J., Gheorghiade, M., Lyon, A. R. & Butler, J. (2016). Cancer therapy-related cardiac dysfunction and heart failure: part 1: definitions, pathophysiology, risk factors, and imaging. Circ Heart Fail, 9(1), e002661. https://doi.org/10.1161/CIRCHEARTFAILURE.115.002661
Cardinale, D., Iacopo, F. & Cipolla, C. M. (2020). cardiotoxicity of anthracyclines. In Front Cardiovasc Med, 7, 26. https://doi.org/10.3389/fcvm.2020.00026
Dattani, S., Spooner, F., Ritchie, H. & Roser, M. causes of death. Our World in Data. (2023) [Accessed 28 August 2024] https://ourworldindata.org/causes-of-death
de Barros Wanderley, M. R., Ávila, M. S., Fernandes-Silva, M. M., das Dores Cruz, F., Brandão, S. M. G., Rigaud, V. O. C., Hajjar, L. A., Filho, R. K., Cunha-Neto, E., Bocchi, E. A. & Ayub-Ferreira, S. M. (2022). Plasma biomarkers reflecting high oxidative stress in the prediction of myocardial injury due to anthracycline chemotherapy and the effect of carvedilol: insights from the CECCY Trial. Oncotarget, 13(1). https://doi.org/10.18632/ONCOTARGET.28182
Demissei, B. G., Hubbard, R. A., Zhang, L., Smith, A. M., Sheline, K., McDonald, C., Narayan, V., Domchek, S. M., DeMichele, A., Shah, P., Clark, A. S., Fox, K., Matro, J., Bradbury, A. R., Knollman, H., Getz, K. D., Armenian, S. H., Januzzi, J. L., Tang, W. H. W., … Ky, B. (2020). Changes in cardiovascular biomarkers with breast cancer therapy and associations with cardiac dysfunction. J Am Heart Assoc, 9(2), 214-223. https://doi.org/10.1161/JAHA.119.014708
Dong, Y., Wu, Q. & Hu, C. (2022). Early Predictive Value of NT-proBNP Combined
With Echocardiography in anthracyclines induced cardiotoxicity. Front Surg, 9, 898172. https://doi.org/10.3389/fsurg.2022.898172
Franco, Y. L., Vaidya, T. R. & Ait-Oudhia, S. (2018). Anticancer and cardio-protective effects of liposomal doxorubicin in the treatment of breast cancer. Breast Cancer: Target (Dove Med Press), 10, 131–141. https://doi.org/10.2147/BCTT.S170239
Huang, J., Wu, R., Chen, L., Yang, Z., Yan, D. & Li, M. (2022). Understanding anthracycline cardiotoxicity from mitochondrial aspect. Front Pharmacol, 13, 811406. https://doi.org/10.3389/fphar.2022.811406
Kumfu, S., Chattipakorn, S. C. & Chattipakorn, N. (2022). Iron overload cardiomyopathy: using the latest evidence to inform future applications. Exp Biol Med 247(7). https://doi.org/10.1177/15353702221076397
McDonagh, T. A., Metra, M., Adamo, M., Gardner, R. S., Baumbach, A., Böhm, M., Burri, H., Butler, J., Čelutkienė, J., Chioncel, O., Cleland, J. G. F., Crespo-Leiro, M. G., Farmakis, D., Gilard, M., Heymans, S., Hoes, A. W., Jaarsma, T., Jankowska, E. A., Lainscak, M., … Skibelund, A. K. (2024). 2023 Focused update of the 2021 ESC guidelines for the diagnosis and treatment of acute and chronic heart failure: developed by the task force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC) with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur J Heart Fail, 26(1), 811406. https://doi.org/10.1002/ejhf.3024
Morelli, M. B., Bongiovanni, C., Da Pra, S., Miano, C., Sacchi, F., Lauriola, M. & D’Uva, G. (2022). Cardiotoxicity of anticancer drugs: molecular mechanisms and strategies for cardioprotection. Front Cardiovasc Med, 9, 847012. https://doi.org/10.3389/fcvm.2022.847012
Niang, D. G. M., Ka, S., Hendricks, J., Diouf, D., Gaba, F. M., Diouf, A., Diop, M., Mbow, M., Faye, B., Diallo, R. N., Niang, M. D. S., Deme, A., Mbengue, B. & Dieye, A. (2022). Profile of plasma galectin-3 concentrations, inflammatory cytokines levels and lymphocytes status in breast cancer under chemotherapy. Open J Immunol, 12(01). https://doi.org/10.4236/oji.2022.121001
Pagan, L. U., Gomes, M. J., Gatto, M., Mota, G. A. F., Okoshi, K. & Okoshi, M. P. (2022). The role of oxidative stress in the aging heart. Antioxidants, 11(2), 336. https://doi.org/10.3390/antiox11020336
Perez, I. E., Taveras Alam, S., Hernandez, G. A. & Sancassani, R. (2019). Cancer therapy-related cardiac dysfunction: an overview for the clinician. Clin Med Insights Cardiol, 13, 1179546819866445. https://doi.org/10.1177/1179546819866445
Posch, F., Niedrist, T., Glantschnig, T., Firla, S., Moik, F., Kolesnik, E., Wallner, M., Verheyen, N., Jost, P. J., Zirlik, A., Pichler, M., Balic, M. & Rainer, P. P. (2022). Left ventricular ejection fraction and cardiac biomarkers for dynamic prediction of cardiotoxicity in early breast cancer. Front Cardiovasc Med, 9, 933428. https://doi.org/10.3389/fcvm.2022.933428
Rivankar, S. (2014). An overview of doxorubicin formulations in cancer therapy. In J Cancer Res Ther, 10(4), 853-858. https://doi.org/10.4103/0973-1482.139267
Ruggiero, A., De Rosa, G., Rizzo, D., Leo, A., Maurizi, P., De Nisco, A., Vendittelli, F., Zuppi, C., Mordente, A. & Riccardi, R. (2013). Myocardial performance index and biochemical markers for early detection of doxorubicin-induced cardiotoxicity in children with acute lymphoblastic leukaemia. Int J Clin Oncol, 18(5), 927-933. https://doi.org/10.1007/s10147-012-0458-9
Schmidt, M. E., Goldschmidt, S., Hermann, S. & Steindorf, K. (2022). Late effects, long-term problems and unmet needs of cancer survivors. Int J Cancer, 151(8), 1280-1290. https://doi.org/10.1002/ijc.34152
Sesarman, A., Tefas, L., Sylvester, B., Licarete, E., Rauca, V., Luput, L., Patras, L., Banciu, M. & Porfire, A. (2018). Anti-angiogenic and anti-inflammatory effects of long-circulating liposomes co-encapsulating curcumin and doxorubicin on C26 murine colon cancer cells. Pharmacol Rep, 70(2), 331-339. https://doi.org/10.1016/j.pharep.2017.10.004
Shafiq, A., Moore, J., Suleman, A., Faiz, S., Farooq, O., Arshad, A., Tehseen, M., Zafar, A., Ali, S. H., Din, N. U., Loya, A., Siddiqui, N. & Rehman, F. K. (2020). Elevated soluble galectin-3 as a marker of chemotherapy efficacy in breast cancer patients: a prospective study. Int J Breast Cancer, 2020, 4824813. https://doi.org/10.1155/2020/4824813
Sharma, M., Tuaine, J., McLaren, B., Waters, D. L., Black, K., Jones, L. M. & McCormick, S. P. A. (2016). Chemotherapy agents alter plasma lipids in breast cancer patients and show differential effects on lipid metabolism genes in liver cells. PLoS ONE, 11(1), e0148049. https://doi.org/10.1371/journal.pone.0148049
Shinlapawittayatorn, K., Chattipakorn, S. C. & Chattipakorn, N. (2022). The effects of doxorubicin on cardiac calcium homeostasis and contractile function. J Cardiol, 80(2), 125-132. https://doi.org/10.1016/j.jjcc.2022.01.001
Simões, R., Silva, L. M., de Oliveira, A. N., Alves, M. T., Pestana, R. M. C., de Souza, I. D. P., Oliveira, H. H. M., Soares, C. E., Sabino, A. de P. & Gomes, K. B. (2021). identification of clinical and laboratory variables associated with cardiotoxicity events due to doxorubicin in breast cancer patients: a 1-year follow-up study. Cardiovasc Toxicol, 21(2), 106-114. https://doi.org/10.1007/s12012-020-09600-7
Vucic, R. M., Andrejic, O. M., Stokanovic, D., Stoimenov, T. J., McClements, L., Nikolic, V. N., Sreckovic, M., Veselinovic, M., Aleksandric, S., Popadic, V., Zdravkovic, M. & Pavlovic, M. (2023). Galectin-3 as a prognostic biomarker in patients with first acute myocardial infarction without heart failure. Diagnostics, 13(21), 3348. https://doi.org/10.3390/diagnostics13213348
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Studia Universitatis Babeș-Bolyai Biologia
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.