The effects of bulk, biologic and nano-form fertilizers on Zea mays growth under irrigated circumstances
DOI:
https://doi.org/10.24193/subbbiol.2025.1.03Keywords:
bulk fertilizer, nano-complete, nano-zinc, treatment by trait interactionAbstract
In practical plant biology, nanotechnology has involvements on every step of cropping, such as early growing, maintenance, harvesting and post harvesting and it has caused remarkable changes in findings solutions for facing problems. A trial was done to study the effects of different fertilizers on maize performance. The trial compared NPK bulk fertilizer, synthetic nano-sized fertilizers (boron, zinc, and complete), and biological fertilizers. Analyzing the data through principal component (PC) analysis indicated that the PC1 and PC2 explained for 56 and 27% of the variability in the dataset. Synthetic nano-zinc and nano-boron emerged as the most promising fertilizers, showcasing superior performance in terms of yield performance and yield components. A vector-tool biplot highlighted a robust positively correlation between chlorophyll content and straw yield, along with similar trends in grain yield and number of kernels per ear. Conventional bulk fertilizer (NPK) showed relatively lower efficiency across most evaluated traits. Based on ideal trait biplot, biological yield and stem diameter exhibited similar properties like to ideal trait, while oil percentage and hundred grain weight demonstrated unfavorable performance across treatments. This analysis underscores the efficacy of the treatment × trait biplot in elucidating relationships among traits and facilitating visual comparisons between different fertilizers. Overall, the findings underscore the significant enhancement of various maize cultivation traits through the application of synthetic nano-zinc and boron fertilizers, particularly in full irrigation condition.
Article history: Received 15 March 2024; Revised 16 December 2024;
Accepted 5 May 2025; Available online 25 June 2025
References
Ahmad, I., Ahmad, W., Nepal, J., Junaid, M. B., Bukhari, N. A., Usman, M., ... & Khan, R. N. (2024). Synergistic enhancement of maize crop yield and nutrient assimilation via ZnO nanoparticles and phosphorus fertilization. J Sci Food Agric, 104(11), 6733-6745. https://doi.org/10.1002/jsfa.13500
Al-Juthery, WA H., & Hilal Obaid Al-Maamouri, E. (2020). Effect of urea and nano-nitrogen fertigation and foliar application of nano-boron and molybdenum on some growth and yield parameters of potato. Al-Qadisiyah J Agric Sci, 10(1), 253-263.
Azam, M., Bhatti, H. N., Khan, A., Zafar, L., & Iqbal, M. (2022). Zinc oxide nano-fertilizer application (foliar and soil) effect on the growth, photosynthetic pigments and antioxidant system of maize cultivar. Biocat Agric Biotech, 42, 102343. https://doi.org/10.1016/j.bcab.2022.102343
Begam, A., Pramanick, M., Dutta, S., Paramanik, B., Dutta, G., Patra, P. S., ... & Biswas, A. (2024). Inter-cropping patterns and nutrient management effects on maize growth, yield and quality. Field Crops Res, 310, 109363. https://doi.org/10.1016/j.fcr.2024.109363
Chen, J., Lü, S., Zhang, Z., Zhao, X., Li, X., Ning, P., & Liu, M. (2018). Environmentally friendly fertilizers: A review of materials used and their effects on the environment. Sci Total Environ, 613, 829-839. https://doi.org/10.1016/j.scitotenv.2017.09.186
Chukwudi, U. P., Kutu, F. R., & Mavengahama, S. (2021). Heat stress effect on the grain yield of three drought-tolerant maize varieties under varying growth conditions. Plants, 10(8), 1532. https://doi.org/10.3390/plants10081532
Dimkpa, C. O., Fugice, J., Singh, U., & Lewis, T. D. (2020). Development of fertilizers for enhanced nitrogen use efficiency–Trends and perspectives. Sci Total Envirn, 731, 139113. https://doi.org/10.1016/j.scitotenv.2020.139113
Ebrahimi, H., Sabaghnia, N., Javanmard, A., & Abbasi, A. (2023). Genotype by trait biplot analysis of trait relations in safflower. Agrotech Indus Crops, 3(2), 67-73. https://doi.org/10.22126/ATIC.2023.8906.1086
Farnia, A., Omidi, M. M., & Farnia, A. (2015). Effect of nano-zinc chelate and nano-biofertilizer on yield and yield components of maize (Zea mays L.), under water stress condition. Indian J Nat Sci, 5(29), 4614-4624.
Janmohammadi, M., & Sabaghnia, N. (2023). Strategies to alleviate the unusual effects of climate change on crop production: a thirsty and warm future, low crop quality. A review. Biologija, 69(2), 121–133. https://doi.org/10.6001/biologija.2023.69.2.1
Janmohammadi, M., Sabaghnia, N., Dashti, S., & Nouraein, M. (2016). Investigation of foliar application of nano-micronutrientfertilizers and nano-titanium dioxide on some traits of barley. Biologija, 62(2), 148-156. https://doi.org/10.6001/biologija.v62i2.3340
Janmohammadi, M., Yousefzadeh, S., Dashti, S., & Sabaghnia, N. (2017). Effects of exogenous application of nano particles and compatible organic solutes on sunflower (Helianthus annuus L.). Bot Serb, 41(1), 37-46. https://doi.org/10.5281/zenodo.453554
Kohli, S. K., Kaur, H., Khanna, K., Handa, N., Bhardwaj, R., Rinklebe, J., & Ahmad, P. (2023). Boron in plants: Uptake, deficiency and biological potential. Plant Growth Reg, 100(2), 267-282. https://doi.org/10.1007/s10725-022-00844-7
Konappa, N., Krishnamurthy, S., Arakere, U. C., Chowdappa, S., Akbarbasha, R., & Ramachandrappa, N. S. (2021). Nanofertilizers and nanopesticides: Recent trends, future prospects in agriculture. Advances in Nano-Fertilizers and Nano-Pesticides in Agriculture, 281-330. pp. 616. https://doi.org/10.1016/B978-0-12-820092-6.00012-4
Kumar, M. S., Reddy, G. C., Phogat, M., & Korav, S. (2018). Role of bio-fertilizers towards sustainable agricultural development: A review. J Pharmacogn Phytochem, 7(6), 1915-1921.
Liu, D. Y., Zhang, W., Liu, Y. M., Chen, X. P., & Zou, C. Q. (2020). Soil application of zinc fertilizer increases maize yield by enhancing the kernel number and kernel weight of inferior grains. Front Plant Sci, 11, 506596. https://doi.org/10.3389/fpls.2020.00188
Matsuyama, H., & Ookawa, T. (2020). The effects of seeding rate on yield, lodging resistance and culm strength in wheat. Plant Prod Sci, 23(3), 322-332. https://doi.org/10.1080/1343943X.2019.1702469
Meng, Q., Chen, X., Lobell, D. B., Cui, Z., Zhang, Y., Yang, H., & Zhang, F. (2016). Growing sensitivity of maize to water scarcity under climate change. Sci Rep, 6(1), 19605. https://doi.org/10.1038/srep19605
Mohammadi, N., Gohari, A. M., Pouralibaba, H. R., Moradi, M., Mahmodi, F., Sabaghnia, N., & Maleki, H. H. (2023). Nonparametric stability analysis for disease properties of common bunt in wheat. Iran J Genet Plant Breed, 12(1), 53-75. https://doi.org/10.30479/ijgpb.2023.19395.1359
Porkabiri, Z., Sabaghnia, N., Ranjbar, R., & Maleki, H. H. (2019). Morphological traits and resistance to Egyptian broomrape weed (Orobanche aegyptiaca Pers.) in tobacco under greenhouse condition. Aust J Crop Sci, 13(2), 287-293. https://doi.org/10.21475/ajcs.19.13.02.p1429
Rudani, K., Vishal, P., & Kalavati, P. (2018). The importance of zinc in plant growth-A review. Inter Res J Nat Appl Sci, 5(2), 38-48.
Sabaghnia, N., & Janmohammadi, M. (2016). Biplot analysis of silicon dioxide on early growth of sunflower. Plant Breed Seed Sci, 73(1), 87. https://doi.org/10.1515/plass-2016-0008
Sabitha, N., Reddy, D. M., Reddy, D. L., Sudhakar, P., & Reddy, B. R. (2024). Association analysis over seasons among morphological, physiological and yield components with kernel yield in maize (Zea mays L.). J Adv Bio Biotech, 27(5), 151-156. https://doi.org/10.9734/jabb/2024/v27i5774
Saritha, G. N. G., Anju, T., & Kumar, A. (2022). Nanotechnology-Big impact: How nanotechnology is changing the future of agriculture?. J Agric Food Res, 10, 100457. https://doi.org/10.1016/j.jafr.2022.100457
Senthilkumar, K., Sillo, F. S., Rodenburg, J., Dimkpa, C., Saito, K., Dieng, I., & Bindraban, P. S. (2021). Rice yield and economic response to micronutrient application in Tanzania. Field Crops Res, 270, 108201. https://doi.org/10.1016/j.fcr.2021.108201
Suganya, A., Saravanan, A., & Manivannan, N. (2020). Role of zinc nutrition for increasing zinc availability, uptake, yield, and quality of maize (Zea mays L.) grains: An overview. Commun Soil Sci Plant Ana, 51(15), 2001-2021. https://doi.org/10.1080/00103624.2020.1820030
Tehulie, N. S., & Eskezia, H. (2021). Effects of nitrogen fertilizer rates on growth, yield components and yield of food barley (Hordeum vulgare L.): A Review. Journal of Plant Sci Agric Res, 5, 46.
Yan, W. (2001). GGEbiplot—a Windows application for graphical analysis of multi-environment trial data and other types of two-way data. Agron J, 93(5), 1111–1118. https://doi.org/10.2134/agronj2001.9351111x
Yari, S., Sabaghnia, N., Pasandi, M., & Janmohammadi, M. (2018). Assessment of genotype× trait interaction of rye genotypes for some morphologic traits through GGE biplot methodology. Ann. Univ. Mariae Curie-Skłodowska Bio, 72, 37-45. http://dx.doi.org/10.17951/c.2017.72.1.37-45
Yousefzadeh, S., Janmohammadi, M., & Sabaghnia, N. (2021). The effect of different nano-, bio-and conventional mineral fertilizers application on some morphological characteristics of maize. Agric Fores, 67(3), 135-145. http://doi.org/10.17707/AgricultForest.67.3.11
Zhang, L., Yu, P., Liu, J., Fu, Q., Chen, J., Wu, Y., & Wei, X. (2022). Spatial variability of maize leaf area and relationship with yield. Agron J, 114(1), 461-470. https://doi.org/10.1002/agj2.20963
Zou, Y., Saddique, Q., Ali, A., Xu, J., Khan, M. I., Qing, M., ... & Siddique, K. H. (2021). Deficit irrigation improves maize yield and water use efficiency in a semi-arid environment. Agric Water Manag, 243, 106483. https://doi.org/10.1016/j.agwat.2020.106483
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Studia Universitatis Babeș-Bolyai Biologia

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.